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A B S T R A C T

Accurate wind power forecasting is essential for (i) the management of wind energy, (ii) increasing the
integration of generated power into the electrical grid, and (iii) enhancing maintenance efficiency. This paper
proposes a novel hybrid model for short-term (1-hour ahead) wind power forecasting. The model integrates the
echo-state network (ESN) architecture with empirical mode decomposition (EMD) to improve forecast accuracy.
Unlike existing approaches that use separate models for each decomposed signal after EMD method, proposed
model uses a single ESN structure to predict wind power by incorporating all decomposed signals and their past
values. The main advantage of this architecture is that it eliminates the need to train multiple models, thereby
streamlining the forecasting process. To evaluate the performance of the proposed model, one year of data from
the West of Duddon Sands, Barrow, and Horns Power offshore wind farms is utilized. Firstly, the classical ESN
model and the EMD-ESN hybrid model are compared for the three datasets. Then, a comprehensive evaluation
is performed by comparing the results of the proposed model with commonly used standalone and hybrid
forecasting models such as Multi-Layer Perceptron (MLP), Adaptive-Neuro Fuzzy Inference System (ANFIS),
Long Short-Term Memory (LSTM), Bidirectional LSTM (BiLSTM), EMD-LSTM, EMD-BiLSTM, Variational Mode
Decomposition based ESN (VMD-ESN), and Wavelet Decomposition based ESN (WD-ESN). The results show that
the EMD-ESN hybrid model outperforms implemented models in predicting wind power in all three datasets.
Furthermore, the proposed EMD-ESN model for an onshore wind turbine power data in Germany is compared
with the SOTA models, such as Transformer, Informer, Autoformer, and Graph Patch Informer (GPI), in the
literature. This study highlights the superior predictive capabilities of proposed model, making it a valuable
tool for enhancing the accuracy of wind power forecasts, thereby contributing to the reliable integration of
wind energy into the power grid.
1. Introduction

Wind energy has emerged as the primary driver for decarbonizing
global energy production, playing a significant role in achieving net-
zero targets worldwide. Global Wind Energy Council (GWEC), 2023
reported that the global wind power market saw a noteworthy expan-
sion in its new capacity, reaching 77.6 GW in 2022 [1]. This surge
contributed to a cumulative installed capacity of 906 GW, reflecting
a remarkable 9% increase when compared to the figures from the
preceding year. Projections indicate an annual addition of approxi-
mately 136 GW of wind power capacity over the next five years,
marking a substantial compound annual growth rate of 15%. Due to
increased capacity efficiency and advancements throughout the entire
lifecycle of offshore wind processes, this technology is regarded as
essential for addressing carbon mitigation requirements and enhancing
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its competitiveness [2]. There are expectations for a substantial 55%
reduction in the levelized cost of electricity from offshore wind by the
year 2030. The EU has hosted the majority of the world’s offshore
wind capacity and has subsequently elevated its offshore wind power
capacity goal to reach 60 GW by the year 2030 [3].

Management of wind energy generation efficiently and depend-
ably presents a significant challenge due to its inherently volatile
nature. The precision of wind power forecasting is vital, represent-
ing a critical requirement for energy producers and grid operators
alike [4,5]. The complex interplay of ever-changing wind patterns, to-
pographical influences, and environmental factors necessitates precise
prediction models that can adapt to these dynamic conditions. The
seamless incorporation of wind energy into the power grid and the
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MLP Multi-Layer Perceptron
MSE Mean Squared Error
NWP Numerical Weather Prediction
PSF Pattern Sequence-based Forecasting
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Std Standard Deviation
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VMD-ESN Variational Mode Decomposition based

Echo-State Network
VMD-ESN-STO Variational Mode Decomposition based

Echo-State Network with Subseries to The
Orginal Series

WD-ESN Wavelet Decomposition based Echo-State
Network
maximization of its contribution to a more environmentally friendly
and sustainable energy landscape hinge on our ability to harness the
accuracy of wind power forecasting [6]. Historically, numerous fore-
casting models have been originally devised and implemented in the
context of onshore wind installations [7]. Nonetheless, the applicability
of conventional forecasting methods to offshore settings necessitates
significant enhancements due to a multitude of factors. In particular,
offshore wind environments are characterized by greater wind speed
continuity, stronger winds, and less turbulent conditions. Additionally,
the availability of offshore wind speed observations is comparatively
scarcer when compared to onshore locations. Furthermore, the in-
fluence of coastal effects must also be taken into account [8,9]. In
order to facilitate the successful integration of large-scale offshore
wind energy into the power system while upholding reliability, it is
imperative to attain a comprehensive understanding of offshore wind
speed characteristics and their associated properties.
2

Various approaches and methods have been developed to estimate
wind power, given the value and importance of wind energy. In the lit-
erature, numerous studies provide multiple techniques and approaches
for wind energy prediction. These research studies include a wide
range of methods, from traditional approaches to machine learning and
artificial neural networks [10]. Air flow modeling [11,12], numerical
weather prediction (NWP) [13] and statistical approaches [14] have
been frequently employed for wind speed and power forecasting. Fur-
thermore, in recent years, Deep Learning (DL) methods, particularly
Recurrent Neural Network (RNN) [15,16] and Convolutional Neural
Networks (CNN) [17,18], have significant potential to improve wind
forecasting. Most of these studies focus on improving the methods and
modeling to increase forecasting accuracy and optimize energy produc-
tion. However, the estimation results of current models in the wind
energy sector indicate certain limitations and potential improvements.

Decomposition methods are often employed as a preprocessing in

the literature, to enhance the effectiveness of models employed for
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wind energy forecasting. Decomposition-based models belong to a cate-
gory of hybrid models that initially break down the wind speed/power
time series into more stable subseries. Subsequently, individual fore-
casting models are constructed for each of these subseries. The at-
tributes of each subseries are significantly influenced by both the
decomposition length and the level of decomposition [19]. Therefore,
it is imperative to meticulously ascertain these factors. Presently, in
existing decomposition-based models, the determination of the de-
composition length and level typically relies on empirical approaches.
Enhancing the efficacy of decomposition-based models in real-world
forecasting scenarios necessitates the development of methodologies for
accurately selecting the appropriate decomposition length and level.
In the majority of current decomposition-based models, the ultimate
predictive outcomes commonly involve aggregating the forecasting
results of each subseries directly. Nevertheless, as the predictability of
individual subseries can vary, the distribution of prediction residuals
may differ across them. A potential approach to enhance the effective-
ness of decomposition-based models involves combining the prediction
results from each subseries using an appropriate weighting model. Such
an analysis approach dissects intricate data sets into simpler compo-
nents or features to comprehend the underlying data structure, reveal
concealed patterns, and concentrate on specific components. Decom-
position methods facilitate the processing, visualization and analysis of
data. They can significantly enhance the performance of wind energy
forecast accuracy by converting wind data into an easily understand-
able and practical set of components [19]. The following are the most
widely used decomposition techniques in signal processing: Empirical
Mode Decomposition (EMD), Ensemble Empirical Mode Decomposi-
tion (EEMD), Variational Mode Decomposition (VMD), Wavelet Packet
Transform (WPT), Complete Ensemble Empirical Mode Decomposition
(CEEMD), and Complete Ensemble Empirical Mode Decomposition with
Adaptive Noise (CEEMDAN).

Hybrid models, which combine decomposition techniques with
other forecasting methods, are becoming increasingly important in
wind power or speed forecasting. For example, Liu et al.’s (2012) [20]
investigation introduces a hybrid EMD-ANN model for forecasting wind
speeds, merging Empirical Mode Decomposition (EMD) with Artificial
Neural Networks (ANNs). Another notable example is the research by
Bokde and colleagues (2020) [21], who present two hybrid intelli-
gent models, EEMD-PSF and EEMD-PSF-ARIMA, which demonstrate
a significant improvement in the accuracy of wind speed and power
prediction through the integration of Ensemble Empirical Mode De-
composition (EEMD) with Pattern Sequence-based Forecasting (PSF)
and Autoregressive Integrated Moving Average (ARIMA) models. In
addition, Duan et al. (2018) [22] have used a hybrid forecasting model
based on a long short-term memory (LSTM) neural network combined
with an improved variational mode decomposition to improve wind
power forecasting. In the study by Yagang Zhang et al. (2022) [23],
CEEMDAN, a decomposition algorithm, is selected to process wind
speed sequences into IMFs, followed by further decomposition using
SVD, optimizing Elman’s parameters using PSO, and using ARIMA for
prediction. These studies demonstrate a growing trend in the literature
to develop hybrid models that exploit the benefits of decomposition
techniques and other modeling approaches, resulting in better and
more reliable wind energy forecasts. The results from these studies also
confirm the effectiveness of decomposition-based hybrid approaches in
improving forecast accuracy, outperforming stand-alone models.

Building on the positive outcomes achieved by integrating decom-
position techniques and other modeling approaches into hybrid models,
our focus turns to the essential component of wind forecasting: the
Echo State Network (ESN) model. In addition to wind forecasting,
ESN models have been used effectively in areas such as time series
prediction of financial markets [24], robotics applications [25,26],
fault diagnosis [27], and speech emotion recognition [28]. Comprising
3

an input layer, a reservoir layer, and an output layer, ESN models
are characterized by their rapid and efficient recurrent neural net-
work structure. The neurons within the reservoir layer are sparsely
connected, and the weights of the input and reservoir layers are pre-
determined. Linear regression allows for the output weights to be
trainable. Several studies have utilized the ESN model for wind power
and speed prediction. Chitsazan et al. (2019) introduced two novel
methods for wind speed and direction forecasting based on the internal
states of ESN [29]. Tian (2021) [30] introduced a hybrid approach that
employs an enhanced particle swarm optimization technique to fine-
tune the parameters of Echo State Networks (ESN) for the purpose of
wind speed forecasting. Wang and colleagues (2019) also employed
the ESN model with wavelet transform for wind power prediction,
highlighting its superiority compared to traditional methods and thus
providing reliable forecasts for wind energy producers [31]. Hu et al.
(2023) presented a hybrid forecasting model named VMD-ESN-STO,
which combines rolling Variational Mode Decomposition (VMD), Echo
State Networks (ESN), and the subseries to the original series (STO)
structure [32]. The model outperforms six comparative models across
four wind speed datasets, demonstrating its effectiveness in wind speed
forecasting. These examples highlight the adaptability and significant
potential of ESN in enhancing wind power and speed projection. This
makes it an essential resource for the renewable energy sector.

In this study, we aim to address the critical requirement for accurate
short-term wind power forecasting, which is essential for the seamless
integration of wind energy into the grid. Our approach involves intro-
ducing a novel hybrid model, combining Echo-State Networks (ESN)
with Empirical Mode Decomposition (EMD), in order to considerably
improve forecast accuracy. The rationale for our study originates from
the inherent unpredictability of wind power, which necessitates de-
pendable prediction techniques to maximize energy generation and grid
functionality. In contrast to conventional methodologies, our proposed
approach simplifies the procedure by removing the requirement for
training multiple models for each decomposed signal, underscoring
the efficiency and feasibility of our methodology. After undergoing
thorough evaluation against established models, our study highlights
the superior predictive capabilities of the EMD-ESN hybrid model,
positioning it as a valuable tool for the renewable energy sector,
contributing to sustainable energy production and grid reliability. The
contributions made to the literature in this study are given below:

• This paper presents a novel hybrid model that combines Echo-
State Networks (ESN) and Empirical Mode Decomposition (EMD)
to enhance short-term wind power forecasting.

• The forecasting process is streamlined by using one ESN struc-
ture to predict wind power. This incorporates all decomposed
signals and their past values, thereby eliminating the necessity
of training multiple models.

• Via a comprehensive evaluation, we compare the results of
the proposed model with commonly employed models in the
literature, including Multi-Layer Perceptron (MLP), Adaptive-
Neuro Fuzzy Inference System (ANFIS), Long Short-Term Mem-
ory (LSTM), Bidirectional Long Short-Term Memory (BiLSTM),
Empirical Mode Decomposition based Long Short-Term Mem-
ory (EMD-LSTM), Empirical Mode Decomposition based Bidi-
rectional Long Short-Term Memory (EMD-BiLSTM), Variational
Mode Decomposition based Echo State Network (VMD-ESN), and
Wavelet Decomposition based Echo State Network (WD-ESN).

• The superior predictive performance of the EMD-ESN hybrid
model across all three datasets demonstrates its potential for
accurately forecasting wind power.

• To evaluate the proposed EMD-ESN model with SOTA mod-
els, a public dataset from an onshore wind farm was utilized.
The SOTA models includes LSTM, Gate Recurrent Unit (GRU),
Temporal Convolutional Network (TCN), Long-term Time Series
Forecasting (LTSF)-Linear (DLinear), Long- and Short-term Time-
series network (LSTNet), Transformer, Informer, Autoformer,

and Graph Patch Informer (GPI).



Energy 300 (2024) 131546U. Yuzgec et al.

S
N
o
e
t
s

2

f
e
N
d
d
s
E
e

2

n
a
t
1
a
d
i
r
d
i
s

s
l
v
r
p
t
s
i
f
l

w
A
s
d

f
p
w
c
n
c
i
i

2

a
m
p
p
r

n
a
d
a
r
e
r

m
a
w
t
i
g
s
H
o
d
v
o
i
c

r
t
o

𝑥

𝑦

w

• The model’s significance lies in its contribution to reliable in-
tegration of wind energy into the power grid, which supports
sustainable and efficient energy generation.

The remaining parts of this study can be summarized as follows:
ection 2 describes the methods used, such as EMD and Echo State
etwork Model. Furthermore, it describes how the hybrid model based
n EMD and ESN is constructed and the datasets used. Performance
valuation metrics are also presented in this section. Section 3 presents
he results obtained and the discussion of these results. Finally, a
ummary of the study is presented in the last section.

. Methods and datasets

This section details a new approach for short-term wind power
orecasting developed in this study. Our methodology exploits the syn-
rgy between Empirical Mode Decomposition (EMD) and Echo-State-
etwork (ESN) modeling. Unlike conventional methods that utilize
istinct models for each decomposed signal, our technique combines all
ecomposed signals and their past data into a singular ESN model. The
ubsequent subsections present a comprehensive account of the EMD-
SN hybrid model, information about the datasets, and performance
valuation criteria employed in our investigation.

.1. Empirical mode decomposition

Empirical Mode Decomposition (EMD) is a signal processing tech-
ique with notable attention in recent years. It is capable of efficiently
nalyzing and decomposing complex, non-linear, and non-stationary
ime series data. Dr. Norden E. Huang developed EMD method in the
990s [33] for use in various fields such as meteorology, finance,
nd biomedical signal processing. At its essence, EMD is a method
riven by data that aims to adaptively break down a given time series
nto a limited number of intrinsic mode functions (IMFs). These IMFs
epresent the fundamental oscillatory modes that are present in the
ata, and their derivation is based on the local properties of the data
nstead of predetermined basis functions or assumptions about the
tationarity of the data [34].

The Empirical Mode Decomposition (EMD) algorithm comprises
everal essential procedures. Initially, the sifting process identifies the
ocal extrema in the time series and generates upper and lower en-
elopes to acquire the first Intrinsic Mode Function (IMF) that rep-
esents the highest frequency oscillations. The extraction of IMF then
roceeds by repeating the process iteratively, which involves sub-
racting the present IMF from the original signal, thereby obtaining
ubsequent IMFs, each signifying oscillatory components that vary
n timescale. Finally, the residue is obtained. The residual signal,
ollowing the extraction of all IMFs, depicts the extended trend or
ow-frequency characteristics of the data [35]. Where 𝑥(𝑡) represents a

particular time series, the EMD calculation steps are defined as follows.

Step 1: All local extrema within the signal, denoted as 𝑥(𝑡), are
initially identified. These local minimum and maximum values
are then employed for interpolation, resulting in the generation
of respective upper and lower envelopes (𝑈𝑥(𝑡) and 𝐿𝑥(𝑡)) using
cubic splines.

Step 2: The average envelope value 𝑚(𝑡) and the detailed component
𝑑(𝑡) are computed according to Eqs. (1) and (2), correspondingly.

𝑚(𝑡) =
𝑈𝑥(𝑡) + 𝐿𝑥(𝑡)

2
(1)

𝑑(𝑡) = 𝑥(𝑡) − 𝑚(𝑡) (2)

Step 3: Until d(t) transforms into an IMF, the process proceeds based
on the following criteria:
𝑇
∑

[

𝑑𝑗 (𝑡) − 𝑑𝑗−1(𝑡)
]2

( )2
≤ 𝛿 (3)
4

𝑡=1 𝑑𝑗−1(𝑡) r
where 𝑇 represents the signal length and 𝑗 denotes the number
of iterative calculations. The usual value for 𝛿 is typically set
between 0.2 and 0.3.

Step 4: Continue iterating through steps one to three until all in-
trinsic mode functions (IMFs) and the detailed signal have been
acquired. Ultimately, the original time series 𝑥(𝑡) may be decom-
posed as given below:

𝑥(𝑡) = 𝑐𝑖(𝑡) + 𝑅𝑛(𝑡) (4)

here, 𝑐𝑖(𝑡) and 𝑅𝑛(𝑡) stand for IMF signals (i=[1 n]) and residual signal.
n IMF within EMD captures signals that have significantly different
cales, or it can represent a signal of the same scale appearing in
ifferent components.

The adaptability of EMD to capture both high-frequency and low-
requency components in a data-driven manner renders it an ideal
reprocessing technique for wind power forecasting. By decomposing
ind speed and power time series data into IMFs, EMD permits con-

entration on pertinent forecast-relevant components while removing
oise and undesirable variations. In this study, we utilize EMD as a vital
onstituent of our combined wind power prediction model, showcasing
ts efficacy in identifying the underlying patterns in wind data and
mproving the precision of short-term wind power forecasts.

.2. Echo state network model

The Echo State Network (ESN) model represents a capable and
daptable architecture for a Recurrent Neural Network (RNN). The
odel has gained significant attention in recent years due to its ca-
acity for processing complicated temporal data. ESNs are particularly
roficient in handling tasks such as time series prediction [36], pattern
ecognition [37], and signal processing [38].

At the heart of an ESN is a dynamic reservoir of interconnected
odes. These activations collectively capture temporal dependencies
nd complex patterns in input data. What differentiates ESNs from tra-
itional RNNs is the fixed, random connectivity of these nodes, known
s the ‘‘reservoir’’, which simplifies the challenges of training recur-
ent networks. ESNs are recognized for their streamlined architecture,
ffortless training, and exceptional performance across an extensive
ange of applications [39].

In Fig. 1, the basic architecture of the ESN model is shown. The ESN
odel comprises three main layers: an input layer, a dynamic reservoir,

nd an output layer. The input layer’s role is to receive input signals,
hich stimulate the network’s activation. The dynamic reservoir con-

ains many sparsely connected neurons and replaces the hidden layer
n ESN. This reservoir processes information. Finally, the output layer
enerates the network’s output signal. Looking at the ESN architectural
tructure in Fig. 1, it seems that the input layer is assumed to possess

input units, the reservoir contains 𝑁 reservoir neurons, and the
utput layer comprises L neurons. Here, 𝑢(𝑘) =

[

𝑢1(𝑘), 𝑢2(𝑘),… , 𝑢𝐻 (𝑘)
]𝑇

enotes input vector, 𝑥(𝑘) =
[

𝑥1(𝑘), 𝑥2(𝑘),… , 𝑥𝑁 (𝑘)
]𝑇 represents state

ector of dynamic reservoir, and 𝑦(𝑘) =
[

𝑦1(𝑘), 𝑦2(𝑘),… , 𝑦𝐿(𝑘)
]𝑇 is the

utput vector. The weight matrix among the internal reservoir units
s represented by 𝑊 . The input weight matrix (𝑊𝑖𝑛) indicates the
onnectivity between the input layer and the reservoir neurons.

The output weight matrix is represented by 𝑊𝑜𝑢𝑡. The matrix 𝑊𝑏𝑎𝑐𝑘
epresents the feedback weight relationships linking the output layer to
he reservoir neurons. The update on the status of ESN reservoirs and
utputs can be expressed as follows:

(𝑘 + 1) = 𝑓 (𝑊𝑖𝑛𝑢(𝑘 + 1) +𝑊 𝑥(𝑘) +𝑊𝑏𝑎𝑐𝑘𝑦(𝑘)) (5)

(𝑘 + 1) = 𝑔(𝑊𝑜𝑢𝑡𝑥(𝑘 + 1)) (6)

here 𝑓 stands for the activation functions of the neurons in the

eservoir and 𝑔 denotes the activation functions of the neurons in
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Fig. 1. ESN model architecture [40].
the output layer. Throughout the training process, the input weight
matrix 𝑊𝑖𝑛, internal weight matrix 𝑊 , and feedback weight matrix
𝑊𝑏𝑎𝑐𝑘 remain static, maintaining their initialized values, while only the
output weight matrix 𝑊𝑜𝑢𝑡 is subject to adaptation through simple linear
regression, guided by the training dataset. This approach streamlines
the training process by maintaining the original random initialization of
weight matrices, specifically those representing the reservoir’s internal
dynamics, and keeping them constant during training. Therefore, the
primary focus of modeling an ESN concerns the computation of the
output weight matrix. The ESN model was trained using the ridge
regression method. The steps of the ESN training algorithm are given
below:

1. Parameters Initialization: Set the reservoir’s size (𝑁), leakage
rate (𝛼), spectral radius 𝜌, 𝑊𝑖𝑛, 𝑊 , 𝑊𝑏𝑎𝑐𝑘, and washout time step
(WOT).

2. Reservoir States Update: Calculate the new reservoir states 𝑥(𝑘+
1) with the following formula:

𝑥(𝑘+ 1) = (1 − 𝛼)𝑥(𝑘) + 𝛼 ⋅ 𝑓 (𝑊𝑖𝑛𝑢(𝑘+ 1) +𝑊 𝑥(𝑘) +𝑊𝑏𝑎𝑐𝑘𝑦(𝑘)) (7)

Here, the parameter named leakage rate, denoted by 𝛼, controls
the extent to which the previous state is retained.

3. Output Weight Matrix Elements Calculation: Calculate output
weights 𝑊𝑜𝑢𝑡 with Eq. (8) using the reservoir state vector (𝑋)
and the expected output vector (𝑌 ) at moments greater than or
equal to WOT.

𝑊𝑜𝑢𝑡 = 𝑌 𝑇𝑋𝑇 (

𝑋𝑋𝑇 + 𝜆𝐼
)−1 (8)

Here, 𝐼 denotes the identity matrix, and 𝜆 represents the regu-
larization parameter (used as 1𝑒 − 8).

2.3. Hybrid model based on Empirical Mode Decomposition (EMD) and
Echo State Network (ESN)

This subsection presents a framework of the new hybrid model
for wind power forecasting. Our model, which combines Empirical
Mode Decomposition (EMD) and Echo State Network (ESN), provides
a reliable and efficient approach to address the intricate and ever-
changing nature of wind power generation. The combination of these
efficient techniques aims to maximize the benefits of both approaches,
ultimately leading to improved accuracy and dependability in short-
term wind power predictions. Throughout this section, we explore the
structure and essential elements of the proposed innovative compos-
ite model. This model adopts EMD’s signal decomposition and ESN’s
5

modeling to produce precise wind power forecasts. Firstly, the EMD
provides a way to refine the wind data. It is clear that more stable and
linear signals must be obtained to improve the forecasting performance.
The EMD tackles the challenges effectively due to the non-linearity
of the signal. It also preserves the main characteristics of the origi-
nal signal. Secondly, the proposed ESN model includes a novel input
approach process. The forecasting process is streamlined by using one
ESN structure to predict offshore wind power. Fig. 2 illustrates the
structure of the proposed hybrid EMD-ESN model. The steps of working
the proposed EMD-ESN model are indicated with numbers in the figure.
The steps outlining the forecast process for the EMD-ESN hybrid model
are provided below:

1. Data collection: The real wind power data extending over one-
year periods were collected from three distinct offshore wind
farms. The data was gathered at hourly intervals, covering inter-
vals of time ranging from December 4, 2015, to March 31, 2020,
for West of Duddon Sands, December 31, 2014, to April 30,
2020, for Horns Power, and May 1, 2019, to April 30, 2020, for
Barrow. Each dataset consists of 8760 hourly observations, ren-
dering a comprehensive outlook of the wind power performance
at these sites.

2. Wind power data decomposition: The hourly wind power data
obtained from offshore wind farms is decomposed into more
basic and inherent components referred to as empirical modes
via the implementation of the EMD method.

3. Data normalization: Normalization of data is performed on each
empirical mode signal that undergoes the EMD technique to
achieve consistent values within a range of 0 to 1.

4. Data preparation: For each normalized empirical mode signal,
time series were created for use in both the input and output of
the ESN model. To obtain these time series, the sliding window
technique was used to generate four input series (𝑥(𝑡), 𝑥(𝑡 − 1),
𝑥(𝑡 − 2), and 𝑥(𝑡 − 3)) and one output series (𝑥(𝑡 + 1)).

5. Setting the dataset for training and testing: 70% of the prepared
time series of all normalized empirical mode signals were used in
the training of the ESN model and the rest in its testing process.

6. Training ESN model: To train the ESN model, the model input is
IMF signal data obtaining by EMD preprocessing method, while
wind power data as the model output. All of the IMF signals
are utilized at the inputs of the model. At iterations t, (t − 1),
(t − 2), and (t − 3), each IMF signal serves as an input for
the wind power forecast at the (t + 1)th iteration. The number
of model entries is the product of the number of decomposed
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Fig. 2. Framework of hybrid EMD-ESN model.
signals and one more of the past time step. In our study, the
number of signals decomposed by EMD is 13 and the number of
past time steps is 3, so the total number of ESN model inputs is
52. Here, ESN model is employed due to its excellent nonlinear
fitting ability and high training efficiency.

7. Test of the ESN model: At this stage of the experiment, the ESN
model, which has been trained beforehand, is tested with 30% of
the data set that has never been used during the training process.
Consequently, the model’s reaction to a previously unknown
data set is established. RMSE, MSE, MAE and R2 metrics were
utilized to assess the model’s performance.
6

2.4. Datasets

This study used datasets comprising one year of real wind power
data from three diverse offshore wind farms to assess the effectiveness
of the proposed hybrid model. The wind farms mentioned are West of
Duddon Sands and Barrow, situated between England and Ireland, and
Horns Power, located near the coast of Denmark in the North Sea. The
capacity of West of Duddon Sands is 388.8 MW with an 80.0-m hub
height, and it utilizes 108 Siemens SWT-3.6-120 turbines. The offshore
wind farm, Barrow, has been operational from midnight on December
4th, 2015 until 9 p.m., on March 31st, 2020. It boasts a capacity of



Energy 300 (2024) 131546U. Yuzgec et al.

o
o
m
p
e

𝑀

90.0 MW and a hub height of 75.0 m, utilizing 30 Vestas V90-3000
offshore turbines. Similarly, Horns Power, with a capacity of 160 MW
and a hub height of 70.0 m, employs 49 Vestas V80-2000 turbines.
Horns Power has been in operation since midnight on December 31st,
2014 until 10 p.m. on April 30th, 2020. The data sets, comprising
hourly measurements, were collected over one-year periods from each
diverse location. Each of the three data sets comprises 8760 observa-
tions gathered hourly between 02.12.2018 at 21:00 and 31.03.2020
at 21:00 for West of Duddon Sands, between 01.05.2019 at 23:00
and 30.04.2020 at 22:00 for Horns Power, and between 22.12.2018 at
21:00 and 31.03.2020 at 21:00 for Barrow. In the Horns Power dataset,
data recorded between the hours of 6603 and 6801 during a one-year
segment was registered as zero due to multiple technical issues with
the wind turbines at that time. Therefore, we removed this anomalous,
insignificant data from this dataset.

2.5. Performance metrics

When evaluating different models for estimating short-term wind
power, the study utilized four key performance metrics to thoroughly
assess their effectiveness. These metrics included Mean Squared Er-
ror (MSE), which calculates the average of squared errors between
predicted and observed values, offering insight into overall prediction
accuracy. Root Mean Squared Error (RMSE), however, is a valuable
indicator since it takes the square root of MSE, rendering it inter-
pretable in the same unit as the original data and thus providing a more
intuitive comprehension of prediction errors. Mean Absolute Error
(MAE) calculated the average absolute differences between predicted
and actual values, providing a durable indicator of model performance.
Lastly, the models’ capabilities in short-term wind power estimation
were comprehensively assessed using R-squared (𝑅2), a widely rec-
gnized coefficient of determination, which measured the proportion
f variance in the wind power data explained by the models. These
etrics together provided a comprehensive evaluation of the models’
erformance. Calculation formulas for all metrics are provided in the
quations presented below:

𝑆𝐸 =
∑𝑁

𝑖=1(𝑦𝑖 − 𝑦𝑖)2

𝑁
(9)

𝑅𝑀𝑆𝐸 =

√

∑𝑁
𝑖=1(𝑦𝑖 − 𝑦𝑖)2

𝑁
(10)

𝑀𝐴𝐸 = 1
𝑁

𝑁
∑

𝑖=1

|

|

𝑦𝑖 − 𝑦𝑖|| (11)

𝑅2 = 1 −
∑𝑁

𝑖=1(𝑦𝑖 − 𝑦𝑖)2
∑𝑁

𝑖=1(𝑦𝑖 − 𝑦𝑖)2
(12)

where 𝑦𝑖 and 𝑦𝑖 represent the actual and predicted values, respectively.
𝑁 denotes the number of samples.

3. Results and discussion

This section presents the experimental results of the proposed EMD-
ESN hybrid model. Firstly, we acquired comparative outcomes of both
the original ESN model and the hybrid EMD-ESN model for three
different offshore wind power datasets. Next, an in-depth analysis
was conducted using popular models such as Multi-Layer Perceptron
(MLP), Adaptive-Neuro Fuzzy Inference System (ANFIS), Long Short-
Term Memory (LSTM), Bidirectional Long Short-Term Memory (BiL-
STM), Empirical Mode Decomposition based Long Short-Term Mem-
ory (EMD-LSTM), and Empirical Mode Decomposition based Bidirec-
tional Long Short-Term Memory (EMD-BiLSTM), frequently employed
in prediction processes in the literature. Finally, a comparative study
with State-of-the-Art (SOTA) models for different horizon values for a
onshore wind turbine power data in Germany is presented.
7

3.1. Experiment 1: Comparison of EMD-ESN and other models for offshore
wind farms

The EMD-ESN hybrid model was implemented and assessed through
MATLAB on a personal computer that features an Intel Core i7-8550U
Microprocessor, clocked at 1.80 GHz, a NVIDIA GeForce MX150 graph-
ics card, and 20 GB of RAM. For the ESN model, washout was set
to 100, reservoir size 50, leakage rate 0.3, and spectral radius 0.5.
Furthermore, the activation function in the reservoir was set to the
tanh function, while the outlet layer was set to the linear function.
Initially, we compared the performance of the ESN model and our
hybrid proposal. For both models, the training and testing phases were
carried out 10 times. In Fig. 3, the best training and testing results
obtained for the Barrow dataset are shown comparatively. Here, the
blue color represents the 1-h wind power forecast generated by the
proposed EMD-ESN model, the red color represents the 1-h wind power
forecast produced by the ESN model, and the black color shows the
actual 1-h wind power signal. Table 1 summarizes the statistical results
obtained from the training process of the original ESN and the proposed
hybrid EMD-ESN model the for Barrow dataset. This table includes the
error metrics (MSE, RMSE, and MAE) and 𝑅2 values for both models.
Similarly, Table 2 displays the statistical test outcomes of both models
using the same dataset. The best metric values are highlighted in bold
in both tables for the Barrow dataset.

The training and testing results of the models demonstrate the
superiority of the proposed EMD-ESN model over the classical ESN
model for this dataset. The primary reason for this is due to the
EMD decomposition method utilized before the model implementation.
Nonetheless, the literature indicates the common practice of employing
separate models for each decomposed signal, thus leading to a sub-
stantial increase in training time for the hybrid model. Thanks to the
EMD-ESN model architecture proposed in this study, training running
times that can compete with the ESN model have been attained. For
example, the training time of the proposed new EMD-ESN model archi-
tecture (0.1956 s) is only two times longer than that of the ESN model
(0.0987 s). However, in the classical architecture where one ESN model
is used for each IMF signal, this training time is up to ten times longer.

In the second analysis, the performance of both models was eval-
uated using the West of Duddon Sands dataset. The best training and
testing outcomes achieved for the West of Duddon Sands dataset are
demonstrated in Fig. 4. Additionally, Tables 3 and 4 provide statistical
results of both models after being run 10 times during the training and
testing phases for the West of Duddon Sands dataset. Here, the analysis
indicates that the proposed hybrid EMD-ESN model outperforms the
ESN model, similar to the Barrow dataset.

The mean 𝑅2 values of the hybrid model were 98.08% (93.58%
for ESN) and 97.52% (92.69% for ESN) for training and testing, re-
spectively. During the training phase, it is evident that the ESN model
outperforms the hybrid model in terms of running times. However, the
results indicate that the hybrid model’s running times are competitive
with those of the ESN model. Statistical results are obtained using the
third dataset, Horns Power dataset, after comparing the original ESN
model and the proposed hybrid EMD-ESN model. The best training and
test plots, acquired by running both models for 10 times, are presented
in Fig. 5.

Table 5 presents the statistical outcomes for the error metrics and
running times of both models achieved through training. In Table 6,
the comparative test performances of the ESN and EMD-ESN models
are depicted. As in the previous tables, the best results are shown in
bold.

The error metrics in both the training and test results demonstrate
that the proposed hybrid EMD-ESN model is more effective than the
classical ESN model when predicting wind power for this dataset.
𝑅2 results demonstrate the same success of the EMD-ESN model in
the training and testing phases. As the running time is as crucial as

prediction performance in training, the analysis of running times for
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Fig. 3. The training and test results of the proposed EMD-ESN hybrid model for Barrow dataset.
Table 1
Training results of the proposed EMD-ESN and ESN models for Barrow dataset.

Metric Best Worst Median Mean Std

ESN EMD-ESN ESN EMD-ESN ESN EMD-ESN ESN EMD-ESN ESN EMD-ESN

MSE 72.693 18.633 73.128 18.817 72.807 18.713 72.814 18.718 1.239E−01 6.528E−02
RMSE 8.526 4.317 8.552 4.338 8.533 4.326 8.533 4.326 7.256E−03 7.543E−03
MAE 5.600 3.038 5.636 3.057 5.620 3.048 5.620 3.048 1.010E−02 5.652E−03
R2 0.9149 0.9782 0.9144 0.9780 0.9147 0.9781 0.9147 0.9781 1.451E−04 7.644E−05
Run time 0.0245 0.0299 0.0294 0.0339 0.0252 0.0304 0.0258 0.0311 1.642E−03 1.485E−03
Table 2
Test results of the proposed EMD-ESN and ESN models for Barrow dataset.

Metric Best Worst Median Mean Std

ESN EMD-ESN ESN EMD-ESN ESN EMD-ESN ESN EMD-ESN ESN EMD-ESN

MSE 64.177 15.458 65.102 21.103 64.661 16.788 64.635 17.141 3.674E−01 1.600E+00
RMSE 8.011 3.932 8.069 4.594 8.041 4.097 8.040 4.136 2.285E−02 1.877E−01
MAE 5.173 2.833 5.263 3.515 5.229 3.006 5.222 3.034 2.697E−02 1.989E−01
R2 0.8995 0.9758 0.8980 0.9670 0.8987 0.9737 0.8988 0.9732 5.755E−04 2.506E−03
Table 3
Training results of the proposed EMD-ESN and ESN models for West of Duddon Sands dataset.

Metric Best Worst Median Mean Std

ESN EMD-ESN ESN EMD-ESN ESN EMD-ESN ESN EMD-ESN ESN EMD-ESN

MSE 340.300 101.400 342.110 102.820 341.130 102.320 341.150 102.280 8.043E−01 3.872E−01
RMSE 18.447 10.070 18.496 10.140 18.470 10.115 18.470 10.113 2.177E−02 1.916E−02
MAE 11.513 7.052 11.562 7.078 11.539 7.063 11.541 7.064 1.635E−02 8.277E−03
R2 0.9360 0.9809 0.9357 0.9807 0.9358 0.9808 0.9358 0.9808 1.513E−04 7.282E−05
Run time 0.0258 0.0299 0.0562 0.0847 0.0439 0.0328 0.0426 0.0436 1.143E−02 2.005E−02
Table 4
Test results of the proposed EMD-ESN and ESN models for West of Duddon Sands dataset.

Metric Best Worst Median Mean Std

ESN EMD-ESN ESN EMD-ESN ESN EMD-ESN ESN EMD-ESN ESN EMD-ESN

MSE 333.570 99.584 336.730 158.190 334.780 107.620 334.980 113.840 1.211E+00 1.911E+01
RMSE 18.264 9.979 18.350 12.577 18.297 10.374 18.302 10.639 3.307E−02 8.524E−01
MAE 11.259 7.013 11.454 8.957 11.334 7.452 11.340 7.568 6.634E−02 6.105E−01
R2 0.9272 0.9783 0.9265 0.9655 0.9269 0.9765 0.9269 0.9752 2.643E−04 4.173E−03
8
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Fig. 4. The training and test results of the proposed EMD-ESN hybrid model for West of Duddon Sands dataset.
Fig. 5. The training and test results of the proposed EMD-ESN hybrid model for Horns Power dataset.
Table 5
Training results of the proposed EMD-ESN and ESN models for Horns Power dataset.

Metric Best Worst Median Mean Std

ESN EMD-ESN ESN EMD-ESN ESN EMD-ESN ESN EMD-ESN ESN EMD-ESN

MSE 384.950 124.730 388.970 126.290 387.120 125.530 386.990 125.450 1.163E+00 4.524E−01
RMSE 19.620 11.168 19.722 11.238 19.675 11.204 19.672 11.200 2.957E−02 2.020E−02
MAE 12.483 7.577 12.588 7.625 12.516 7.610 12.518 7.609 3.063E−02 1.437E−02
R2 0.8514 0.9519 0.8498 0.9513 0.8506 0.9515 0.8506 0.9516 4.491E−04 1.747E−04
Run time 0.0261 0.0296 0.0293 0.0617 0.0266 0.0453 0.0269 0.0454 1.076E−03 1.597E−02
Table 6
Test results of the proposed EMD-ESN and ESN models for Horns Power dataset.

Metric Best Worst Median Mean Std

ESN EMD-ESN ESN EMD-ESN ESN EMD-ESN ESN EMD-ESN ESN EMD-ESN

MSE 577.700 239.800 586.770 758.320 584.400 285.810 583.940 332.430 2.524E+00 1.549E+02
RMSE 24.035 15.486 24.223 27.538 24.174 16.901 24.165 17.914 5.230E−02 3.578E+00
MAE 15.032 10.614 15.304 22.507 15.148 12.570 15.159 13.464 7.382E−02 3.399E+00
R2 0.7759 0.9070 0.7724 0.7058 0.7733 0.8891 0.7735 0.8710 9.790E−04 6.011E−02
9
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both models in this phase was also conducted. The same outcome was
achieved with this dataset as with the other two datasets. The EMD-
ESN model has a longer training time than the ESN model due to
the computational load caused by EMD preprocessing. However, when
compared to other decomposed hybrid models in previous studies, the
singular ESN model architecture employed in this research displays a
favorable run-time for the training process.

To summarize, it is understood that the proposed EMD-ESN model
predicts wind power more successfully than the original ESN model for
all three data sets. According to the average values of the statistical
MSE error metrics presented in the tables, the success of the proposed
model is numerically demonstrated. For the Barrow dataset, the mean
MSE achieved during ESN model training decreased by 74.293% with
the implementation of the proposed EMD-ESN model. The test results
showed a 73.480% improvement in MSE performance. In terms of the
West of Duddon Sands dataset, the EMD-ESN model was able to reduce
the average MSE metric value during training by 70.019% and during
testing by 66.016%. For the last dataset, Horns Power, our hybrid
model achieved a 67.583% error reduction in training and a 43.071%
error reduction in testing. By integrating the ESN architecture with
empirical mode decomposition (EMD), the model effectively decom-
poses the intricate dynamics of wind behavior into distinct IMFs, each
representing a specific timescale or frequency component.

Unlike traditional approaches that rely on separate models for indi-
vidual IMFs, our model ingeniously incorporates all IMFs and their his-
torical data into a single ESN framework. This comprehensive method-
ology enables the model to dynamically adjust to the evolving nature
of wind data, efficiently discerning the correlation between short-term
fluctuations and longer-term trends. The model additionally derives
from the echo-state network’s inherent capacity for managing nonlinear
relationships and complex data, enabling it to detect nuanced, intricate
connections within the wind data.

Numerous wind speed and power estimation models exist in the lit-
erature. In our research, we evaluated the performance of the proposed
hybrid EMD-ESN model against commonly used models. These models
investigated include Multi-Layer Perceptron (MLP), Adaptive-Neuro
Fuzzy Inference System (ANFIS), Long Short-Term Memory (LSTM),
Bidirectional Long Short-Term Memory (BiLSTM), Empirical Mode De-
composition based Long Short-Term Memory (EMD-LSTM), Empirical
Mode Decomposition based Bidirectional Long Short-Term Memory
(EMD-BiLSTM), Variational Mode Decomposition based Echo State Net-
work (VMD-ESN), and Wavelet Decomposition based Echo State Net-
work (WD-ESN). In this comparison study, we added the best result
values of the original ESN model to the tables to analyze the results
better. The MLP model is a traditional model comprising of three layers
with nodes arranged in the format 4-8-1. The ANFIS model is a model
with four inputs, one output, and five layers with each input consisting
of two Gaussian membership functions. Two layers, each with 100
units, were utilized for both the LSTM and BiLSTM models. The models
were optimized using the Adam optimizer, with a minimum batch size
of 16 and a maximum of 50 training epochs. The dropout value was
0.5. In the model structure utilizing EMD decomposition methodology
(EMD-LSTM and EMD-BiLSTM), an individual LSTM/BiLSTM model is
employed for every decomposed signal. For the two different decom-
position methods (VMD and WD) integrated into the ESN model, the
model framework proposed in this study is preferred, i.e., instead of
using one ESN prediction model for each decomposed signal, a single
ESN model is used for all signals and their historical values. Thus, the
EMD, VMD and WD decomposition methods are fairly compared within
the same ESN model framework without emphasizing the advantage of
the proposed model.

In Table 7, we present the comparison results of the proposed EMD-
ESN model alongside other models for the Barrow dataset. For West of
Duddon Sands dataset, the EMD-ESN model and the other forecasting
models were compared and the obtained results are summarized in
10

Table 8. Comparative outcomes for the final dataset, Horns Power, are
presented in Table 9. All tables contain four metric values for both
the training and testing phases of the models. These are MSE, RMSE,
MAE, and 𝑅2. The best metric values obtained between the models are
indicated in bold in the tables.

Examining the table results for the Barrow dataset, it is evident
that the EMD-BiLSTM model was the best for training, and the EMD-
ESN model was the best for testing. Our model ranked second for the
training phase, just after the EMD-BiLSTM model. In both phases, the
EMD-BiLSTM model and the proposed EMD-ESN model displayed very
similar results for this specific dataset. The findings from the West
of Duddon Sands dataset indicate that the EMD-ESN model performs
the best during both training and testing stages. The VMD-ESN and
EMD-BiLSTM models, which are based on the primary decomposi-
tion method, ranked second and third, respectively, for this particular
dataset. As anticipated, the primary decomposition methods, such as
EMD, VMD, reveal significant components within the wind dataset
and thus improving the performance of the models. However, in the
comparison of EMD-BiLSTM and the proposed EMD-ESN models, the
fact that our proposed model and architecture comes to the fore reveals
the advantages of the method used.

Nevertheless, from the comparison of VMD-ESN and the proposed
model using the same model framework, it is clear that the EMD
decomposition method improves the results by 21.55% in training
and 24.41% in testing in terms of the MSE metric compared to the
VMD decomposition method. Based on the model training and testing
outcomes for the Horns Power dataset, it is evident that the EMD-ESN
model is the best performing model in both the training and testing
phases. Here, in the training results, the EMD-BiLSTM model achieved
the closest results to the metric results of the proposed EMD-ESN model.
The main difference between the two models is their framework: our
proposed hybrid framework uses an ESN model for all decomposed
signals and their past values. The test results indicate that the metric
results of the VMD-ESN model and the proposed EMD-ESN model are
quite close.

Fig. 6 shows the 𝑅2 results of the EMD-ESN and the other models
for training and test stages. As shown in the sub-figures, the suggested
hybrid EMD-ESN model is the most suitable model for both training
and testing, except for the training outcomes of the Barrow dataset.

Among the three datasets, the EMD-ESN model achieved the best
𝑅2 value for the West of Duddon Sands dataset (98.09% for training
and 97.83% for testing). In the Barrow data set, the 𝑅2 value of the
model was found to be 97.82% for training and 97.58% for testing.
The lowest performance of the model (𝑅2 metric) was achieved on the
Horns Power dataset (95.19% for training and 90.70% for testing). This
is because the data sets used show different characteristics.

3.2. Experiment 2: Comparison of EMD-ESN and SOTA models for onshore
wind farm

In this section, the proposed EMD-ESN model is compared with
the most recent SOTA models in the literature for a German onshore
wind turbine power data. These SOTA models are LSTM, Gate Recur-
rent Unit (GRU) [41], Temporal Convolutional Network (TCN) [42],
Long-term Time Series Forecasting (LTSF)-Linear (DLinear) [43], Long-
and Short-term Time-series network (LSTNet) [44], Transformer [45],
Informer [46], Autoformer [47], and Graph Patch Informer (GPI) [48].

The dataset used for comparison consists of 15 min of power data
from a terrestrial wind farm in Germany for the period 01.01.2011 to
30.12.2021 [49]. From this dataset, only the wind power data from 1
January 2020 to 19 June 2020 were taken and the proposed EMD-ESN
model results were found for different horizon values (3-6-12 steps).
70% of the data set is reserved for training and the rest for testing.
Twice the prediction horizon values constitute the look-back window
size, in short, the number of inputs of the proposed model. For instance,
a prediction horizon of 3 means that the model will predict 3 steps

ahead. The model has 6 inputs and a look-back window size of 6.



Energy 300 (2024) 131546U. Yuzgec et al.

r
c
t
v
E
w
o

m
b
a
g
s
a

4

p
a

Table 7
Comparison results of the proposed EMD-ESN and other models for Barrow dataset.

Metrics LSTM BiLSTM MLP ANFIS ESN

Training Test Training Test Training Test Training Test Training Test

MSE 85.584 77.555 79.715 69.033 75.323 66.689 83.991 76.158 72.693 64.177
RMSE 9.2512 8.8065 8.9284 8.3086 8.6789 8.1663 9.1647 8.7269 8.5260 8.0111
MAE 5.8682 5.6011 6.3167 5.8006 5.8548 5.2974 6.3036 5.8011 5.5998 5.1728
R2 0.8996 0.8797 0.9065 0.8929 0.9117 0.8966 0.9015 0.8819 0.9149 0.8995

EMD-LSTM EMD-BiLSTM VMD-ESN WD-ESN EMD-ESN

Training Test Training Test Training Test Training Test Training Test

MSE 25.422 22.108 17.634 15.658 26.797 23.950 33.340 56.206 18.633 15.458
RMSE 5.0420 4.7019 4.1993 3.9571 5.1766 4.8939 5.774 7.4971 4.3165 3.9316
MAE 3.7225 3.3991 3.0517 2.9132 3.8822 3.6506 3.6223 5.2118 3.0380 2.8334
R2 0.9702 0.9657 0.9793 0.9757 0.9686 0.9625 0.9610 0.9120 0.9782 0.9758
Table 8
Comparison results of the proposed EMD-ESN and other models for West of Duddon Sands dataset.

Metrics LSTM BiLSTM MLP ANFIS ESN

Training Test Training Test Training Test Training Test Training Test

MSE 384.23 381.38 362.21 349.84 361.25 345.47 426.13 413.55 340.30 333.57
RMSE 19.602 19.529 19.032 18.704 19.007 18.587 20.643 20.336 18.447 18.264
MAE 13.951 14.207 11.962 11.145 12.360 11.540 13.301 12.464 11.513 11.259
R2 0.9277 0.9156 0.9319 0.9226 0.9321 0.9235 0.9199 0.9085 0.9360 0.9272

EMD-LSTM EMD-BiLSTM VMD-ESN WD-ESN EMD-ESN

Training Test Training Test Training Test Training Test Training Test

MSE 162.85 169.59 144.97 136.22 129.26 131.75 169.58 756.59 101.40 99.584
RMSE 12.761 13.023 12.040 11.671 11.369 11.478 13.022 27.506 10.070 9.9792
MAE 9.5021 9.9876 9.1340 8.8001 8.5003 8.3069 8.1357 25.160 7.0519 7.0126
R2 0.9694 0.9625 0.9727 0.9699 0.9757 0.9712 0.9681 0.8348 0.9809 0.9783
Table 9
Comparison results of the proposed EMD-ESN and other models for Horns Power dataset.

Metrics LSTM BiLSTM MLP ANFIS ESN

Training Test Training Test Training Test Training Test Training Test

MSE 416.42 541.45 430.73 568.02 423.16 553.63 435.64 550.86 384.95 577.70
RMSE 20.406 23.269 20.754 23.833 20.571 23.529 20.872 23.470 19.620 24.035
MAE 14.221 15.497 12.405 13.472 13.979 15.356 14.067 15.007 12.483 15.032
R2 0.8403 0.7940 0.8348 0.7839 0.8377 0.7894 0.8329 0.7904 0.8514 0.7759

EMD-LSTM EMD-BiLSTM VMD-ESN WD-ESN EMD-ESN

Training Test Training Test Training Test Training Test Training Test

MSE 168.76 785.19 125.86 770.13 167.45 240.14 190.50 459.27 124.73 239.80
RMSE 12.991 28.021 11.219 27.751 12.940 15.496 13.802 21.431 11.168 15.486
MAE 9.0148 15.910 7.9517 15.016 8.7534 10.807 8.6392 16.108 7.5774 10.614
R2 0.9353 0.7013 0.9517 0.7070 0.9354 0.9068 0.9265 0.8218 0.9519 0.9070
Fig. 7 shows the EMD-ESM model’s wind power forecasting test
esults for 3, 6, and 12 horizon steps. As expected, the best forecasting
urve is obtained for the lowest horizon value of 3, and it is seen that
he prediction curves of the model deteriorate as the prediction horizon
alue increases. Table 10 summarizes the results of the proposed EMD-
SN and SOTA models for three different horizon values. Here, the
ind power prediction results of SOTA models are taken from the study
f Liu and Fu [48].

The table consists of two error metrics (MSE and MAE) for each
odel used in the wind power forecasting 3, 6 and 12 steps ahead. The

est model values are shown in bold in the table. Based on the MSE
nd MAE values, the EMD-ESN hybrid model proposed in this study
ives the best results for all horizon values. The main reasons for the
uccess of the model are the EMD decomposition method and the ESN
rchitecture proposed in this study.

. Conclusion

In this study, a hybrid forecasting model for short-term wind power
rediction is proposed by integrating the echo-state network (ESN)
11

rchitecture with empirical mode decomposition (EMD). The approach
diverges from conventional methods that use separate models for indi-
vidual decomposed signals after EMD. The model utilizes a unified ESN
structure to forecast wind power by considering all decomposed signals
and their historical values. This innovative architecture simplifies the
forecasting process by eliminating the necessity of training multiple
models.

To evaluate the efficacy of our newly proposed model, we conducted
widespread experiments using one year’s worth of data obtained from
offshore wind farms situated in the West of Duddon Sands, Barrow,
and Horns Power. We initially compared the classical ESN model with
the EMD-ESN hybrid model across these three data sets. Subsequently,
we conducted a thorough analysis by comparing our model against
commonly used models in the literature, such as Multi-Layer Perceptron
(MLP), Adaptive-Neuro Fuzzy Inference System (ANFIS), Long Short-
Term Memory (LSTM), Bidirectional Long Short-Term Memory (BiL-
STM), Empirical Mode Decomposition based Long Short-Term Memory
(EMD-LSTM), and Empirical Mode Decomposition based Bidirectional
Long Short-Term Memory (EMD-BiLSTM).

When the results of the comparison of the proposed hybrid EMD-
ESN model with independent single models (LSTM, BiLSTM, MLP,

ANFIS, and ESN) are examined, the MSE metric value decreased by
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Fig. 6. 𝑅2 results of EMD-ESN and other models for offshore datasets.
Fig. 7. EMD-ESN model’s test results for 3-6-12-step wind power forecasting.
6.55% in the training phase and 78.14% in the testing phase for the
arrow dataset. Similarly, the West of Duddon Sands dataset showed
n improvement in the MSE metric of 72.95% in the training phase
nd 72.70% in the testing phase. For the Horns Power dataset, the
roposed model reduced the MSE metric value by 70.17% during
raining and 57.05% during testing. When comparing the four different
12
hybrid models used in this study (EMD-LSTM, EMD-BiLSTM, VMD-ESN,
and WD-ESN) with the proposed EMD-ESN model, it was found that the
proposed model for the Barrow dataset reduced the MSE metric value
by 27.77% for training and 47.57% for testing. Similarly, for the West
of Duddon Sands dataset, the average reduction in the MSE metric was
33.14% for training and 66.64% for testing. The MSE metrics for the
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Table 10
Comparison results of the proposed EMD-ESN and SOTA models for onshore wind power
dataset.

Model Horizon 3 6 12

LSTM
MSE 0.020 0.031 0.059
MAE 0.074 0.102 0.159

GRU MSE 0.020 0.031 0.059
MAE 0.075 0.100 0.155

TCN MSE 0.018 0.029 0.054
MAE 0.069 0.095 0.144

DLinear MSE 0.041 0.038 0.073
MAE 0.131 0.124 0.184

LSTNet MSE 0.018 0.030 0.058
MAE 0.068 0.098 0.152

Transformer MSE 0.015 0.024 0.059
MAE 0.061 0.092 0.165

Informer MSE 0.017 0.027 0.057
MAE 0.066 0.099 0.157

Autoformer MSE 0.024 0.031 0.076
MAE 0.096 0.102 0.181

GPI MSE 0.013 0.020 0.042
MAE 0.052 0.080 0.133

EMD-ESN MSE 0.00188 0.00383 0.00868
MAE 0.02182 0.03711 0.06504

Horns Power dataset decreased by 23.55% during the training phase
and 57.46% during the test phase. The MSE metrics demonstrate that
the proposed EMD-ESN hybrid model outperforms the single models,
as expected. This is the contribution of the primary decomposition
(EMD) method. The superiority of the proposed model over the LSTM
and BiLSTM hybrid models using the EMD decomposition method is
due to the ESN model architecture proposed here, which utilizes all
IMF signals. The success achieved in countering the ESN hybrid model
using various decomposition methods, such as VMD and WD, can be
attributed to the EMD decomposition method.

In addition to the experimental studies with the offshore wind
dataset, the proposed hybrid model is tested for a publicly available
onshore wind dataset with the latest popular prediction SOTA models
such as Transformer, Informer, Autoformer and Graph Patch Informer.
The proposed EMD-ESN hybrid model is the most successful among
other SOTA models in wind power forecasting for different forecast
horizons. Our research conclusively verifies the superior forecasting
efficiency of the EMD-ESN hybrid model in both onshore and off-
shore datasets, surpassing alternative models. This study emphasizes
the predictive capabilities of our proposed model, positioning it as a
valuable tool for improving the accuracy of wind power predictions.
Such advancements are crucial for the smooth integration of wind
energy into the power grid, enabling a reliable and sustainable energy
supply.

This study has limitations, but we are confident that our proposed
EMD-ESN model architecture is effective. To further verify its general
applicability, we recommend using more diverse data sets. It is impor-
tant to note that while our model may not be the most appropriate
for certain situations, we are confident in its overall performance.
Further research is required to determine the effectiveness of alterna-
tive model architectures or approaches in varying weather conditions,
geographical regions or scales. It is important to note that the data
sets and conditions used in our study may not fully reflect real-world
applications. Therefore, additional experimental studies and field tests
are necessary to verify the applicability of the proposed model in the
field. To achieve more comprehensive and reliable results in future
studies, it is crucial to be aware of these limitations.

Further studies are necessary to investigate various model ap-
proaches and decomposition methods to enhance the accuracy and
efficiency of wind power forecasting. The effectiveness of a novel
13
model architecture combining EMD and ESN was demonstrated in this
study. But, it is vital to explore the potential of other model combi-
nations. For instance, new and diverse deep learning structures could
be investigated to improve the accuracy of predictions. Furthermore,
it would be worthwhile to investigate additional methods of decom-
position and explore their possible combinations. Numerous feature
engineering techniques could also be assessed in order to enhance
data quality and optimize predictions. It may also prove beneficial to
conduct comparative analyses of wind energy and power data from
various geographical regions and to examine studies that take into
account region-specific variations in model performance for future
research. Further investigation of these methods and approaches has
the potential to enhance the future reliability and integration of wind
energy forecasting.
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