from DeepKoopmanModel import DeepKoopMan, DeepKoopManConfig import torch import numpy as np import matplotlib.pyplot as plt Model = torch.load('./ModelLib/DeepKoopmanModel.pt', map_location="cpu") encoder = Model.encoder decoder = Model.decoder Data = np.loadtxt('./DataLib/DataNor.csv', delimiter=',') Latent = encoder(torch.from_numpy(Data).float()) DataPre = decoder(Latent).detach().numpy() MSE = np.linalg.norm(Data - DataPre, ord='fro') ** 2 / np.prod(Data.shape) print(MSE) for fea in np.arange(13): plt.figure(fea) plt.plot(Data[:, fea]) plt.plot(DataPre[:, fea]) plt.show()