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a b s t r a c t

Echo State Networks (ESN) are a type of Recurrent Neural Network that yields promising results in rep-
resenting time series and nonlinear dynamic systems. Although they are equipped with a very efficient
training procedure, Reservoir Computing strategies, such as the ESN, require high-order networks, i.e.,
many neurons, resulting in a large number of states that are magnitudes higher than the number of mod-
el inputs and outputs. A large number of states not only makes the time-step computation more costly
but also may pose robustness issues, especially when applying ESNs to problems such as Model
Predictive Control (MPC) and other optimal control problems. One way to circumvent this complexity is-
sue is through Model Order Reduction strategies such as the Proper Orthogonal Decomposition (POD) and
its variants (POD-DEIM), whereby we find an equivalent lower order representation to an already trained
high dimension ESN. To this end, this work aims to investigate and analyze the performance of POD
methods in Echo State Networks, evaluating their effectiveness through the Memory Capacity (MC) of
the POD-reduced network compared to the original (full-order) ESN. We also perform experiments on
two numerical case studies: a NARMA10 difference equation and an oil platform containing two wells
and one riser. The results show that there is little loss of performance comparing the original ESN to a
POD-reduced counterpart and that the performance of a POD-reduced ESN tends to be superior to a nor-
mal ESN of the same size. Also, the POD-reduced network achieves speedups of around 80% compared to
the original ESN.

� 2023 Elsevier B.V. All rights reserved.
1. Introduction

Recurrent Neural Networks (RNN) are very relevant in applica-
tions related to modeling real-world phenomena when time-
dependent data are available [1,2], and are considered universal
approximators of dynamic systems. As RNNs are nonlinear, their
training suffers from issues such as local minima, slow training,
and the so-called ‘‘fading gradient” problem [3], which is a numer-
ical problem inherent in Backpropagation Through Time (BPTT) [4],
the algorithm used to calculate an RNN gradient. While some solu-
tions focus on solving the fading gradient problem by changing the
RNN structure, such as the Long Short-Term Memory (LSTM) net-
work [5], or the gated recurrent unit [3], another flavor of RNN is
worthy of attention: Reservoir Computing (RC). RC simplifies the
learning by dividing the RNN into two parts: a high-dimensional
recurrent nonlinear layer (the reservoir) with fixed, randomly gen-
erated weights and an adaptive readout output layer, which com-
putes an instantaneous linear combination of the dynamic
reservoir states [6]. The output-layer weights are trained through
linear least squares, overcoming the problems related to nonlinear
training and BPTT. Reservoir Computing became a unifying term for
the frameworks of Liquid State Machines [7] and Echo State Net-
works (ESN) [6], both of which are methods for RNN training inde-
pendently developed.

ESNs follow the general reasoning of Reservoir Computing: they
adopt an architecture with a dynamic reservoir with fixed weights
that projects the input to a high-dimensional space and a trainable
static readout output layer. The dynamic reservoir needs to have
many neurons [6] and the so-called Echo State property, which
refers to the stability properties of the network. There are many
successful applications of ESNs, such as: learning complex goal-
directed robot behaviors [8], fuel cell lifetime prediction [9], wind
speed prediction [10], medium voltage insulators classification
[11], forecasting power system load using an ensemble deep ESN
[12], power systems prediction with enhanced ESN that employ lo-
gistic mapping and bias dropout for reservoir weights generation
[13], and prediction of the daily maximum temperature in the
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Melbourne airport with multi-reservoir ESN and an encoding and
decoding scheme [14]. The large number of dynamic states in the
reservoir is an essential characteristic, as the output, being a linear
combination of them, can represent a more extensive repertoire of
dynamics. However, using ESNs as dynamic models for problems
such as optimization and MPC (Model Predictive Control) [15]
may be an issue since the higher the number of states in the ESN
is, the larger the optimization problem. Because the number of
states in the ESN heavily dominates the number of inputs and out-
puts in such applications, a large reservoir size renders the opti-
mization problem inherently larger and harder to solve.

As ESNs are high-dimensional, model order reduction methods
can find equivalent ESN models with a considerably smaller num-
ber of states but which still keep the properties and performance of
the original high-dimensional ESN. To that end, we count on Proper
Orthogonal Decomposition (POD) [16], which applies Singular
Value Decomposition (SVD) to find an optimal linear transforma-
tion that represents the state space of a large dynamical system
in a more compact form. POD is already widely used to reduce
the number of states of large dynamical models, especially phe-
nomenological models such as a gas reservoir simulator [17] with
tens of thousands of variables. However, POD has one disadvantage
concerning nonlinear systems: although the method can reduce
the number of states, it does not reduce the computation number
of nonlinear functions. There are developments of interpolation
methods, such as the Discrete Empirical Interpolation Method
(DEIM) [16], to mitigate the issue by pivoting and approximating
the nonlinear portion of the given model computation. Both POD
and DEIM can find lower-dimensional networks that are equiva-
lent to the original ESN and, thus, have the potential to alleviate
the computational burden of simulations that depend on the size
of the trained ESN.

The main objective of this work is to experiment with the use of
POD and DEIM to obtain a reduced-order equivalent for an already-
trained ESN. For such end, we apply the reduction given by POD in
three different contexts: a Memory Capacity (MC) [18] evaluation
experiment; a NARMA10 difference equation [19]; and a simulated
oil platform containing two gas-lifted oil wells and one riser [20].
Additionally, we have shown results using DEIM-based reduction
for the ESN in the first and last experiments mentioned above.
We compare the performance of the reduced ESN to the original
(non-reduced) ESN in the three experiments and another ESN with
the same size as the reduced ESN in the MC and NARMA experi-
ments. In this context, our main contributions are twofold: (1)
we have developed efficient computational frameworks for imple-
menting large echo-state network models in a variety of applica-
tions, which is achieved via model-order reduction (MOR)
techniques; and (2) we have assessed the trade-offs between
low-complexity reservoir models, resulting from the application
of model order reduction (MOR), and the large baseline model in
terms of numerical accuracy. The low-complexity models, despite
their relatively small state-space dimensions, demonstrate compa-
rable representation power to the large baseline model. As such,
our work contributes to this nascent field of applications of MOR
strategies to reservoir computing, which can potentially improve
computational performance in modeling, control, and optimiza-
tion. Specifically, the findings of our work are the following:

� The memory capacity of an ESN reduced by POD is generally
higher than that of a non-reduced ESN of equivalent size. This
difference in memory capacity is more significant as the desired
ESN gets smaller in size.

� Given two echo state networks with the same number of states,
the ESN obtained from POD reduction is likelier to perform bet-
ter in a given task. This property is more evident and relevant
when the desired reservoir is small.
2

� By employing a MOR method on ESNs, this work shows that
small ESNs are robust and performant, improving their suitabil-
ity for real-time or embedded applications with memory
limitations.

� DEIM reduction alone for ESNs does not achieve satisfactory re-
sults compared to pure POD reductions.

In broader terms, the main implication of these findings is that a
smaller version of an ESN, obtained by model order reduction, can
achieve nearly equivalent behavior to the original (and larger)
ESN, thus making dynamic reservoirs more compact. The new mod-
el can serve as a proxy model in optimization and predictive con-
trol, as an observer, and in other related tasks, addressing the
issue of computational cost in a reservoir consisting of a large num-
ber of internal states (reservoir size), which can be orders of magni-
tude larger than the number of inputs and outputs.

This paper is organized as follows: Section 2 contains related
works, Section 3 presents the Echo State Networks, Section 4 de-
scribes POD and DEIM, Section 5 reports on the case studies and
experimental testing for the reduced ESN, and Section 7 concludes
the work.
2. Related Work

In the following, we will discuss works in the literature that ad-
dress the issue of reducing the model size in reservoir computing.
One of them is [19], where they propose reducing the number of
states by considering the output as a linear combination of the
states at different instants in time, comparing to an original ESN
through the Information Processing Capacity (IPC) metric, and also
applying the proposal to a NARMA system and the generalized
Hénon-map. The solution raises the effective number of states as
a multiple of the delay or ‘‘drift-state” number utilized.

The architecture is very hardware-friendly, easing the computa-
tion compared to a standard ESN. Another example is the work
[21], where they propose to employ the controllability matrix of
the ESN as a means to find a so-called minimal ESN, which would
be the ESN with the smallest reservoir that could reproduce the
task at hand. They train the ESN for a particular task, obtain the
controllability matrix at given points, and define its rank as a
new candidate reservoir size. An extensive search procedure is
then performed to find the optimal ESN at that size; however, there
is no direct connection between the larger and the smaller ESN. In
summary, the method in [21] proposes a useful way of finding a
minimal reservoir for a task. In comparison, our work follows a dif-
ferent direction: reducing the size of the network through POD.
Another work [22] proposes a different approach to reducing reser-
voir size, which calculates the correlation between each neuron
and eliminates the reservoir neurons with the highest correlation.

The necessary large number of reservoir states in an ESN im-
plies a complex computational model, therefore works such as
[23] employ methods of so-called ‘‘network size reduction,” which
perform multi-objective optimization on the output weights and
minimize not only the least-square error but also the number of
non-zero elements in the output weights. Enforcing sparseness is
ideal for simplifying computations with the ESN. Another work
that follows this line of reasoning is [24], where they enforce a
minimum complexity ESN by forcing the ESN reservoir to follow
a deterministic form (i.e., a circular reservoir).

In [25], they propose to add the reservoir dimensionality reduc-
tion into the architecture via Principal Component Analysis (PCA)
and calculate the output layer based on the PCA output instead
of the reservoir states. They affirm that this enhances the dynamic
properties of the resulting ESN concerning the system identified
and improves the network generalization capabilities. Also,
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applying dimensionality reduction in the states renders the ESN a
tool for dynamic system analysis. In this sense, our POD-ESN
method is similar to PCA regarding obtaining the new state space
but goes beyond [25] by embedding the reduction achieved in
the reservoir’s state update equation. In other words, the reservoir
recurrent simulation is executed in the reduced state space with
POD-ESN, which does not happen in [25].

Another approach of reduction in reservoir computing, not in-
volving POD, is proposed in [26]. Their idea involves procedurally
removing neurons according to the output weight value, which
they curiously discovered that the network performance improves
(given the Lorentz system as an application) by removing the neu-
rons associated with large output weights. They thoroughly ana-
lyze the effect of removing different types of nodes in the ESN.
3. Echo State Networks (ESN)

An ESN is a type of recurrent neural network with useful char-
acteristics for system identification [6], as it represents nonlinear
dynamics well and the training consists in solving a linear least-
squares problem of relatively low computational cost when com-
pared to nonlinear optimization.
3.1. Model

Proposed in [27,28], the ESN is governed by the following
discrete-time dynamic equations:

x kþ 1½ � ¼ 1� cð Þx k½ � þ cf Wr
rx k½ � þWr

iu k½ � þWr
b þWr

oy k½ �� � ð1Þ
y kþ 1½ � ¼ Wo

r x kþ 1½ �; ð2Þ

where: the state of the reservoir neurons at time k is given by x k½ �;
the current values of the input and output neurons are represented
by u k½ � and y k½ �, respectively; c is called leak rate [6], which governs
the percentage of the current state x k½ � that is transferred into the
next state x kþ 1½ �. The weights are represented in the notation
Wto

from, with ‘‘b”, ‘‘o”, ‘‘r”, and ‘‘i” meaning the bias, output, reservoir,
and input neurons, respectively; and f ¼ tanh �ð Þ is an activation
function widely used in the literature, also called a base function
in system identification theory [1]. Fig. 1 depicts a standard archi-
tecture of an echo state network.
Fig. 1. Representation of an Echo State Network, one of the possible models in
Reservoir Computing. Dashed connections (from Reservoir to Output Layer) are
trainable, while solid connections are fixed and randomly initialized. This figure
was obtained from [29].
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The network has N neurons in the reservoir, which is the dimen-
sion of x k½ � and is typically orders of magnitude higher than the
number of network inputs. As long the network training uses reg-
ularization, N can be as large as needed, but at the expense of in-
creased computation time to update the reservoir states as
defined in (1). According to [18], the ESN with no output feedback
connections (the output does not affect the state), which is given
by Wr

o, has a memory capacity (MC) bounded by the number of
neurons in the reservoir (MC 6 N), assuming the use of linear out-
put units.

The recurrent reservoir should possess the so-called Echo State
Property (ESP) [28], i.e., a fading memory of its previous inputs,
meaning that influences from past inputs on the reservoir states
vanish with time. The ESP is guaranteed for reservoirs with
tanh �ð Þ as the activation function, provided that the singular values
of Wr

r < 1. However, this condition limits the richness of the reser-
voir’s dynamical qualities, which discourages its use in practice.
Note that all connections going to the reservoir are randomly ini-
tialized, usually according to the following steps:

1. Every network weight is initialized from a normal distribution
N 0;1ð Þ.

2. Wr
r is scaled so that its spectral radius q (Eigenvalue with the

largest module) characterizes a regime able to create reservoirs
with rich dynamical capabilities. Setting q < 1 in practice often
generates reservoirs with the ESP [6]. However, reservoirs with
q > 1 can still have the ESP since the effective spectral radius
may still be lower than 1 [30,31].

3. Wr
i and Wr

b are multiplied by scaling factors f ri and f rb, respec-
tively, affecting the magnitude of the input.

These scaling parameters, q; f ri , and f rb are crucial in the learning
performance of the network, having an impact on the nonlinear rep-
resentation and memory capacity of the reservoir [32]. Also, low
leak rates allow for higher memory capacity in reservoirs, while
high leak rates favor quickly varying inputs and outputs. The set-
tings of these parameters should be such that the generalization
performance of the network (loss on a validation set) is enhanced.
3.2. Training

While in standard RNNs all weights are trained iteratively using
gradient descent [4], ESNs restrict the training to the output layer
Wo

r . Because the echo state property does not emerge with output
feedback Wr

oy k½ �, this work favors reservoirs without feedback
from the output, i.e., Wr

o ¼ 0. Also, the inputs do not interfere di-
rectly with the output, as systems with direct transmission are less
smooth and more noise-sensitive. To train an ESN, the input data
u k½ � is arranged in a matrix U and the desired output d k½ � in vector
D over a simulation time, where each row uT of U corresponds to a
sample time k and its columns are related to the input units. For
the sake of simplicity, we assume that there are multiple inputs
and only one output. The rows of U are input into the network
reservoir according to each sample time, thereby creating a state
matrix X containing the resulting state sequence. Then, we apply
the Ridge Regression algorithm [2] by using X as the input data
matrix and D as the output data matrix or, in this case, a vector
as we assumed single output. Ridge Regression results in solving
the following linear system:

XTX� kI
� �

Wo
r ¼ XTD; ð3Þ

where k is the Tikhonov regularization parameter, which penalizes
the weight magnitude and avoids overfitting. There are also meth-
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ods to apply least-squares training online [1], but this work does
not use these algorithms.

4. Model Order Reduction

In this section, we propose Model Order Reduction (MOR)
methods for reducing the reservoir dimensionality in ESNs, specif-
ically the Proper Orthogonal Decomposition (POD) and the Discrete
Empirical Interpolation Method (DEIM). We also propose a strategy
for correcting the steady-state error introduced in ESNs by MOR
methods.

4.1. Proper Orthogonal Decomposition

The Proper Orthogonal Decomposition is a method to find a lin-
ear transformation [33] T for a given system that maps a high-
dimensional state space into a reduced one, namely:

x ¼ Tz ð4Þ
where x is a vector of dimension n and z is a vector of dimension
m � n, so that T 2 Rn�m.

The transformation itself is akin to a similarity transformation,
with the main difference being that T lacks an inverse for not being
a square matrix. However, the T resulting from POD is orthonormal
(TTT ¼ I), so the transpose is used in place of an inverse.

To find T, we gather snapshots of the states in a given dynamical
system response, akin to gathering data in a machine learning
problem. The columns of the snapshot matrix X 2 Rn�N are the
states x k½ � 2 Rn, where N is the number of snapshots such that
N P n. Then, we wish to minimize the error induced by projecting
the original state onto the reduced space and back, which leads to
the following error function:

E Tð Þ ¼
XN
k¼1

x k½ � � TTTx k½ �|fflfflffl{zfflfflffl}z k½ �

� �2

ð5Þ

The second term is x projected onto the reduced space of z, and then
lifted back. The optimal T is obtained through singular value decom-
position (SVD) [34], decomposing X in the following form:

UsvdRV
T ¼ X ð6Þ

where Usvd contains the left singular vectors and has dimension
n� n;R contains the singular values and has dimension n� N, with
only n non-zero columns. We consider that R is sorted from the lar-
gest to the smallest singular value. POD does not use the right sin-
gular vector matrix V.

The transformation T that minimizes E Tð Þ is found by concate-
nating the columns with the m largest corresponding singular val-
ues from Usvd. We seek a truncation so that the reduced system
energy is close to the original, measured by:

� ¼
Xm
j¼1

�j; �j ¼ rj=
Xn
i¼1

ri ð7Þ

where � is the total energy contribution of the singular values main-

tained in the reduced-order model, rj is the jth highest singular val-
ue, �j is the energy contribution of that given singular value, and m
is the reduced state dimension. The energy contribution of the re-
maining singular values in the reduction is a metric on how close
the reduced-order model is to the original system regarding infor-
mation. For this work, we measure the energy contribution of each
singular value of the original signal and truncate Usvd to obtain T so
that � reaches a desired energy contribution value (e.g., � ¼ 0:95, so
that the reduced system has 95% of the original system’s energy). In
other words, the reduced-order model carries � information of the
original system. After obtaining T for the dimension reduction
4

through the process above, the reduced ESN dynamics can be ex-
pressed as follows:

z kþ 1½ � ¼ 1� cð Þz k½ � þ cTTf Wr
rTz k½ � þWr

iu k½ � þWr
b

� � ð8aÞ
y kþ 1½ � ¼ Wo

rTz kþ 1½ �; ð8bÞ

We can observe from the operation TTf �ð Þ that the reduced-
order ESN does not reduce the number of computations by only
performing POD on it. In fact, to compute the element-wise
tanh;T brings the dimension back to the original state space size,
which is to be reduced again with TT , increasing the number of
computations. This computational increase is inherent in POD for
nonlinear systems and will be dealt with by the method described
in the next section.

4.2. Discrete Empirical Interpolation

The Discrete Empirical Interpolation Method (DEIM) is an ap-
proximation method to circumvent the POD computation issue
[16], which consists of state projection and lifting operations to
compute state transitions in the reduced-order model. The core
idea of DEIM is to approximate the nonlinear term of a dynamic
system as a polynomial interpolation that resembles the strategy
employed in POD. Given the following discrete-time nonlinear
system:

x kþ 1½ � ¼ Axþ f x k½ �ð Þ; ð9Þ
where the nonlinear function is elementwise, meaning that

f ¼ f xð Þ; f xð Þ; . . . ; f xð Þð Þ ð10Þ
for a given function f such as tanh. Notice that the system is divided
into linear and nonlinear portions. Applying the POD (x ¼ Tz) into
such a system yields:

z kþ 1½ � ¼ TTATz k½ � þ TTf Tz k½ �ð Þ ð11Þ
The nonlinear mapping f of the dynamic system can be approximat-
ed as follows:

PTf Tz k½ �ð Þ � PTUc k½ � ð12Þ
where U 2 Rn�m, which is obtained from the same POD as T, howev-
er with a different number m of singular vectors, with n being the
number of states, and P is a pivoting matrix of the same dimension
as U. DEIM interprets that a linear combination, with basis U and
the elements c k½ � as function coefficients, approximates the elemen-
twise function f.

After obtaining U from Usvd, we then obtain Pwith the following
procedure [16]:

1. The index and value of the largest element of the first left-
singular vector is stored in a list. P starts as a column matrix
with the only non-zero element being the value 1 at the row
corresponding to this index.

2. For each column l P 2 of the POD left-singular vectors (whereeUl is a matrix with the first l� 1 columns of U):

(a) find c where PT eUl

� �
c ¼ PTul, where ul is the left-singular

vector corresponding to the lth column of U.

(b) Calculate r ¼ ul � eUlc and store the maximum absolute val-
ue and index of r in a list. Add a new column to P according
to the obtained index.

3. Output: Pivoting matrix P according to the order dictated by the
index list obtained.

This procedure guarantees that PT eUl is always nonsingular; thus c is
the unique solution to the linear system in step 2 [16]. Letting U be
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the matrix of left singular values obtained from the procedure, it
follows from (12) that:

c k½ � ¼ PTU
� ��1

PTf Tz k½ �ð Þ ð13Þ

The result from (13) leads to the DEIM function interpolation:

f̂ Tz k½ �ð Þ � U PTU
� ��1

PTf Tz k½ �ð Þ ð14Þ

This function approximation has an ‘2 error bound of the following
form [16]:

e‘2 fð Þ 6 k PTU
� �

k2k I� UUT
� �

f Tz k½ �ð Þk ð15Þ

where, in turn:

k PTU
� �

k2 6 1þ
ffiffiffiffiffiffi
2n

p� �m�1
ku1k�1

1 ð16Þ

with u1 being the first column of U and n being the number of orig-
inal states.

The main advantage of DEIM is that, as f is an element-wise
nonlinear function, the following equality holds:

U PTU
� ��1

PT|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}T12Rn�n f Tz k½ �ð Þ|fflfflfflffl{zfflfflfflffl}f:Rn!Rn

¼ U PTU
� ��1

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}T22Rn�m f PTTz k½ �
� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}f:Rm!Rm ð17Þ

The difference between the right-hand side and left-hand side of
this equation is better seen in a compact form,

T1f Tz k½ �ð Þ ¼ T2f PTTz k½ �
� �

where T1 has n columns, which yields the same computation prob-
lem as the original Galerkin projection, whereas T2 has m columns,
which is the reduced state space. This simple difference grants huge
computational savings since the online calculations would be per-
formed in terms of the reduced dimension m;m � n, which miti-
gates the computation issues regarding the POD method.

The DEIM-approximated reduced order ESN has the form ob-
tained by applying DEIM from Eq. (17) into the already reduced
ESN at (8):

z kþ 1½ � ¼ 1� cð Þz k½ �
þ cTTT2f PTWr

rTz k½ � þ PTWr
iu k½ � þ PTWr

b

� �
ð18aÞ

y kþ 1½ � ¼ Wo
r Tz kþ 1½ �; ð18bÞ

The property PTf �ð Þ ¼ f PT
� �

holds for elementwise operations,

which justify the matrix placement in the DEIM reduced-order
ESN.

4.3. Stability Loss in DEIM

According to [35], a contractive linear system is guaranteed to
retain stability when applying POD for model order reduction;
therefore, if the ESN is contractive, the POD-ESN is guaranteed to
retain stability. However, DEIM has no such property. Assume an
equilibrium point xeq of the ESN, and a fixed input u,

xeq ¼ f Wr
rxeq þWr

iuþWr
b

� � ð19Þ

and its reduced mapping zeq ¼ TTxeq. The Jacobian of the full and re-
duced order model are:

J xeq
� � ¼ 1� cð ÞIþ cf0 g xeq

� �� �
Wr

r ð20Þ
J zeq
� � ¼ 1� cð ÞIþ cTTf0 g Tzeq

� �� �
Wr

rT ð21Þ
5

where:

g xð Þ ¼ Wr
rxþWr

iuþWr
b ð22Þ

Since f0 is a diagonal matrix where each element belongs to the in-
terval 0;1ð � for being the elementwise derivative of the tanh func-
tion, the stability of the ESN in both cases is governed by Wr

r at
an equilibrium point. Also, as per [35], the POD reduction retains
the stability of the ESN. Summing up, the original and reduced-
order ESNs are stable provided that the spectral radius of Wr

r is
smaller than 1.

With DEIM, however, the stability is not retained, as shown by
calculating the Jacobian of an ESN reduced by both POD and DEIM:

JDEIM zð Þ ¼ 1� cð ÞIþ cTTU PTU
� ��1

f0 PTg Tzð Þ
� �

PTWr
rT ð23Þ

Notice that the term PTU
� ��1

can amplify the Jacobian to the point

that the ESN dynamic system has an unstable eigenvalue, despite
POD-ESN being stable. This term represents the pivoting of the
truncated singular vectors associated with DEIM.

5. Applications

This section presents results from experiments with reduced-
order ESNs for three case studies, along with a preliminary analysis
on the singular values of the ESN snapshots.

5.1. Preliminary Study: Energy contribution distribution in Echo State
Networks

POD and DEIM originate from applying SVD into the ESN state
response matrix, obtained from exciting the ESN’s reservoir with
an input signal. Thus, the SVD does not depend on the output layer.
To test the influence of input signals into the singular values of the
state snapshots, we initialize 20 different single-input ESN reser-
voirs and apply SVD into the snapshots of the response obtained
from the reservoir, given as inputs with 10;000 timesteps:

� A white noise following the normal distribution N 0;1ð Þ.
� Four different APRBS (Amplitude-modulated Pseudo-Random
Binary Signal) random stair signals, defined by their minimum
period, i.e., 10 timesteps, 100 timesteps, 500 timesteps, and
1;000 timesteps.

� A concatenation in time of all the signals above.

The input signals for the experiments are shown in Fig. 2. Note that
this discussion concerns only the state dynamics of the reservoir;
therefore, it is neither dependent on the identified system nor on
the output weights.

After exciting the ESN with the signals mentioned above, one at
a time, we perform SVD of the resulting ESN state response snap-
shots and plot the energy contribution �j associated with each sin-
gular value, sorted from highest to lowest according to Eq. (7). All
the reservoirs employed for this experiment are fully leaked
(c ¼ 1), have 500 neurons, a spectral radius q ¼ 0:99, and a value
0:1 for both input scaling and bias scaling.

Fig. 3 showcases the mean and standard deviation of the energy
contribution of the 10 highest singular values for each state snap-
shot considering 20 randomly initialized reservoirs. We infer from
this result that the singular values becomemore evenly distributed
the higher the frequencies of the input signal are. As the white
noise is a signal with heavy high-frequency information, we expect
the ESN state response to having a more even energy contribution
distribution among the singular values.

Meanwhile, the lower frequency signals have the energy
contribution concentrated about the highest magnitude singular



Fig. 2. One-dimensional input signals for the reservoir energy contribution
distribution experiment. White noise (top), APRBS signals (usually used in
identification tasks): with a minimum period of 10, 100, 500, and 1,000 timesteps,
respectively, from second topmost plot to bottom.

Fig. 3. Mean and Standard deviation of the first ordered 10 singular values (with 0
corresponding to the highest and 9 to the lowest) obtained from the snapshots of 20
different ESN reservoirs. Each color corresponds to a different input signal fed to the
ESN reservoir, shown in Fig. 2.
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value. In fact, real-life dynamic systems work as low pass filters
[33] and, therefore, they are expected to have lower frequency in-
formation. The slower the system dynamics are, the larger the min-
imum period of an APRBS signal needs to be, which directly affects
the singular value profile of the model order reduction.

This experiment implies that, since the distribution of the ener-
gy contribution depends entirely on the input signal frequency, the
number of states pruned by MOR is higher for cases with low-
frequency dynamics. After all, since the energy contribution is
more concentrated on the first singular values, the number of col-
umns pruned is higher than when the singular values are more
evenly distributed (as in the case of high-frequency signals like
white noise). As an easy example, the highest energy contribution
singular value for the APRBS signal with a minimum period of
1;000 timesteps contributes more to the total energy of the snap-
shots than the sum of the 10 highest singular values for the white
noise shown in the plot.
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5.2. Memory Capacity Evaluation

Short-term Memory Capacity (MC) is a well-known metric for
Echo State Networks [18] that measures how well an ESN can re-
member past inputs and general dynamic storage capacity. MC
serves as a performance measurement for ESN reservoirs which
is obtained from the following procedure:

� For an arbitrary n, train a single-input, single-output Echo State
Network so that the input is a given white noise g k½ �, and the
output is the same white noise delayed n timesteps g k� n½ �.
In layman’s terms, the ESN is supposed to ‘‘memorize” the input
from n timesteps ago.

� Obtain the correlation coefficient Rn for the training with an ar-
bitrary n,
Rn ¼ cov yesn;g k� n½ �ð Þ
var yesnð Þvar g k� n½ �ð Þ ð24Þ

where cov �ð Þ is the covariance operator, yesn is the single ESN
output, var �ð Þ is the variance operator, and, therefore, Rn is
merely the determination coefficient for a given delay n.

� The memory capacity is calculated, in theory, as:
MC ¼
X1
n¼1

Rn ð25Þ

The MC of an ESN was mathematically proven to have an upper
bound in its number of neurons N [18], which means that it is
directly related to the number of network neurons.

For this work, we propose an experiment to compare the mem-
ory capacity of the reduced-order model of the ESN, and the orig-
inal ESN, since the number of neurons is the upper bound for
MC. Because it is impossible to run infinite training experiments,
we define the memory capacity for this experiment as follows:

MC ¼
XNMC

n¼1

Rn ð26Þ

where NMC ¼ 100 is a sufficiently large number to measure the
memory capacity of the network. As preliminary tests show, after
a given n, the determination coefficient converges to a low value.
Therefore, the information regarding memory capacity is more con-
centrated in the lower n spectrum, endorsing the limited number of
experiments (NMC ¼ 100) for comparison purposes.
5.2.1. POD Reduction
We ran the memory capacity experiment for different numbers

of neurons (N ¼ 400;600;800;1000;1200;1400;1600;1800;f
2000;2200g) with an Energy Cutoff (EC) of 1%;5%, and 10%. After
initializing the ESN reservoir at random, we perform model order
reduction for 12 different reservoirs in each configuration. We then
measure the mean and standard deviation for the memory capacity
of these twelve runs while also obtaining the range of the reduced
dimension for a given energy cutoff. This analysis allows us to
measure the memory capacity drop for the model order reduction
and assess how reservoir-dependent the order-reduction proce-
dure is.

All reservoirs analyzed are fully leaked (c ¼ 1:0) and have input
and bias scaling at 0:1. Also, the reservoir spectral radius is
q ¼ 0:99.

Fig. 4 showcases the results of the Memory Capacity experi-
ments when performingMOR at the tested ESNs given different en-
ergy cutoffs, depicting both mean and standard deviation of the 12
runs.



Fig. 4. Plot of the memory capacity as a function of the number of neurons of the
original network (upper plot), and as a function of the number of states (lower plot).
Each point is colored according to the energy cutoff of the POD-ESN that obtained
the MC shown (points in blue are the MC obtained from full ESNs). EC means the
energy cutoff of the applied POD.
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The first plot depicts the number of ESN neurons before apply-
ing POD to a given network. It shows the expected drop in MC re-
sulting from applying MOR with more energy cutoff.

Meanwhile, the second plot portrays the MC as a function of a
given network’s exact number of states after performing MOR
through POD. As MC progresses monotonically, given the number
of states, either in an ESN or in a given MOR of that ESN, it becomes
easy to map a point of the second plot into the first one: for exam-
ple, the last red point (from left to right) of both plots (marked
within a blue circle) have the same memory capacity since they
correspond to the same network/EC configuration. Thus, the MOR
of an ESN with 2200 neurons (first plot) has roughly 750 states
(second plot) at 1% energy cutoff.

As per the previous section, since this experiment traditionally
employs a white noise signal, the drop in the number of reduced
states is not very significant; however, the drop in MC is still smal-
l, given that a large number of states were still cut off (even in the
case of 10% energy cutoff for the 2200 neuron network, the num-
ber of states was reduced to almost a third). In fact, the second plot
shows that a POD-reduced network ends up being more powerful
in terms of MC than a full (non-reduced) ESN with the same num-
ber of states: when we compare an ESN with a given reservoir size
to a POD-reduced network from a larger ESN with the same num-
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ber of states as that ESN reservoir size, the POD-reduced ESN con-
sistently achieves a higher MC. Of course, the better performance is
justifiable because a POD-reduced ESN is still more structurally
complex (originated from a larger ESN) than an ESN (randomly
generated) with the same number of neurons as the reduced
network.

5.2.2. DEIM Reduction
We also performed DEIM for each POD-reduced ESN to further

reduce the number of tanh in the computations and evaluate the
drop in MC compared to the POD-reduced ESN. We tested four dif-
ferent energy cutoff configurations for the DEIM:
1%;5%;10%;20%f g. This choice of four values is justified because
they represent distinct magnitudes of energy cutoff, testing how
the DEIM behaves on four different approximation precision
requirements.

Table 1 shows the results of applying these DEIM configurations
into each POD for three original reservoir sizes
N ¼ 800;1400;2000f g (from the topmost table to the bottom-
most one, respectively). It presents the results for the DEIM reduc-
tion, where the memory capacity is evaluated for each configura-
tion in energy cutoff for both POD and DEIM. The number in
parenthesis is the actual dimension resulting from the reduction.
Each column corresponds to a different energy cutoff configuration
for DEIM, evaluated in the first row. In contrast, each row repre-
sents a different energy cutoff configuration for POD, evaluated
in the first column. For instance, the MC of an ESN with a 1% ener-
gy cutoff POD (yielding 1;119 states when N ¼ 1;400) and a 5%
energy cutoff DEIM (yielding 748 tanh function evaluations when
N ¼ 1;400) is 0.099, 0.03 and 0.02 for N ¼ 800;1400;2000 respec-
tively. Notice that there was no POD reduction for the first row of
each table and no DEIM reduction for the first column of each table.
The empty cells indicate that DEIM can not be employed without
first applying the POD reduction.

The only time DEIM achieved an MC close to the MORwas when
there was a 1% energy cutoff for DEIM considering 10% energy cut-
off for POD. That is, DEIM is performed for smaller reduced-order
models. Regarding the experiments, performance is generally
mildly better whenever DEIM has a higher number of states ratio
than the POD states. For this experiment, DEIM did not perform
well as expected since the white noise signal does not allow for a
significant reduction of states, as it is a highly heavy information
signal.

5.3. NARMA System

As an initial case study for the POD reduction of the ESN, we try
to identify the behavior of a so-called NARMA (Nonlinear Autore-
gressive Moving Average) difference equation system [19], equated
as follows:

y k½ � ¼ 0:3y k� 1½ � þ 0:05y k� 1½ �
Xm
i¼1

y k� i½ �

þ 1:5u k�mþ 1½ �u k½ � þ 0:1 ð27Þ
where m ¼ 10 is the order of the system.

As in [19], the excitation signal applied in (27) is drawn from
the random uniform distribution with a value range of
0 6 u k½ � 6 0:05. A simulation performs 5;000 time steps where
the first 2,000 samples are labeled as training data and the rest is
labeled as test data. This work employs the R2 metric to measure
network performance.

With the dataset mentioned above, we train an ESN with the
following configuration: 1;400 neurons in the reservoir layer, high
enough so that we show the MOR potential at work; a leak rate of
c ¼ 0:7; scaling of 0:1 for both bias and input connections; and



Table 1
Memory capacity evaluated for different energy cutoffs used in POD and DEIM. Each table considers an original ESN with a different size N, to be reduced.

N ¼ 800 Energy Cutoff (EC) for DEIM

EC (POD) 0% 1% 678ð Þ 5% 430ð Þ 10% 279ð Þ 20% 128ð Þ
0% 800ð Þ 19:88	 0:01 – – – –
1% 686ð Þ 19:87	 0:01 0:44	 0:20 0:099	 0:01 0:08	 0:04 0:54	 0:18
5% 445ð Þ 19:86	 0:01 16:48	 2:21 0:059	 0:026 0:096	 0:02 0:55	 0:17
10% 291ð Þ 19:84	 0:008 19:68	 0:03 0:99	 0:25 0:097	 0:02 0:54	 0:18

N ¼ 1;400 Energy Cutoff (EC) for DEIM

EC (POD) 0% 1% 1;186ð Þ 5% 748ð Þ 10% 484ð Þ 20% 226ð Þ
0% 1;400ð Þ 19:93	 0:003 – – – –
1% 1;119ð Þ 19:93	 0:003 0:11	 0:03 0:03	 0:03 0:04	 0:02 0:17	 0:05
5% 772ð Þ 19:91	 0:003 3:189	 1:09 0:03	 0:02 0:04	 0:02 0:17	 0:04
10% 505ð Þ 19:90	 0:003 19:18	 0:50 0:19	 0:02 0:025	 0:02 0:17	 0:05

N ¼ 2;000 Energy Cutoff (EC) for DEIM

EC (POD) 0% 1% 1;835ð Þ 5% 1;122ð Þ 10% 713ð Þ 20% 333ð Þ
0% 2;000ð Þ 19:96	 0:002 – – – –
1% 1;682ð Þ 19:95	 0:002 0:06	 0:01 0:02	 0:02 0:03	 0:01 0:03	 0:03
5% 1;045ð Þ 19:94	 0:002 1:2	 0:4 0:01	 0:02 0:02	 0:02 0:08	 0:03
10% 671ð Þ 19:92	 0:002 18:37	 0:90 0:09	 0:03 0:04	 0:01 0:07	 0:03
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spectral radius of q ¼ 0:99. In terms of R2, the network had a per-
formance of 0:95949337 for the NARMA model output. We will
now carry out experiments of POD for this network to evaluate
how the MOR performs in terms of R2 concerning the original
1;400 units network.

Fig. 5 showcases the experiment regarding applying POD reduc-
tion so that the number of states of the POD-reduced ESN appears
in the x axis (blue dots). For comparison, we also plotted the R2 for
the same NARMA experiment with 10 runs of full (non-reduced)
ESNs with the same reservoir size as the networks that underwent
POD reduction (orange triangles). The POD-ESN reduction general-
ly achieved superior performance over the full ESN at the same
reservoir size, which is understandable, as the POD-reduced ESN
is not only supposed to be an emulation of a larger ESN behavior
but also more complex in structure. The NARMA experiment also
shows that the R2 metric for ESNs reduced to at least 50 states is
very similar to the metric achieved by the original 1,400 units
Fig. 5. Experiment comparing a POD-reduced ESN (blue dots) with an ESN of
equivalent size (to the reduced ESN) (orange triangles) for the 10th-order NARMA
task. The POD reduction is applied on an ESN with 1;400 units in the reservoir. The
horizontal axis is the number of states (units) of the reduced (full) network, while
the vertical axis is the R2 metric on the test set. The plot’s blue horizontal line
corresponds to the R2 of the 1;400 units ESN.
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ESN, i.e., the blue dots are very close to the horizontal blue line
in the plot of Fig. 5 when the number of states is higher than 50.
5.4. Two Wells and One Riser Platform

We now test the MOR over the ESN for a physical problem: an
oil production platform consisting of two gas-lifted oil wells and
one riser, as illustrated in Fig. 6. To gather data, we utilize a com-
posite model consisting of two well models, a riser model, and a
manifold that connects the three units.

All models assume a 2-phase fluid containing gas and liquid.
The well model assumes two control volumes in the gas injection
annulus and the production tubing, with boundary conditions for
gas-lift, reservoir, and outlet pressure. The riser model considers
a horizontal pipeline and the vertical portion of the riser as two
separate control volumes while assuming the inlet flow and outlet
pressure as boundary conditions. The manifold assumes no load
loss due to friction; therefore, it equates the sum of the output flow
Fig. 6. Representation of an oil platform containing two wells and one riser. From
[20].
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from the wells to the riser input flow and the output pressure of
each well to the riser inlet pressure.

Overall, the system has 120 algebraic variables, 10 state vari-
ables, 5 input variables, and precisely 5 boundary conditions.
[36] presents the model in more detail, while [37] describes the ris-
er model. The model configuration is the same as the one described
in [38]. The reader can refer to these works for more details on the
mathematical modeling of the platform.

The experiment with the two-well production platform depicts
how to achieve MOR with ESNs from a system identification stand-
point. First, we must train an ESN model for the two-well one-riser
platform. We generate 50;000 timesteps of data from numerical
simulation of the platform model, yielding a dataset where the
2-dimensional input to the ESN is composed of both well-
production chokes uch;1 and uch;2. Further, the desired 2-
dimensional output of the network corresponds to each well
bottom-hole pressure: Pbh;1; Pbh;2. The training dataset consists of
the first 10;000 timesteps, while the segment from k ¼ 20;000 to
k ¼ 30;000 serves as a validation set, and the rest (k > 30;000)
as a test set. With the described dataset, we train an ESN with
1;400 reservoir units (chosen this high for the sake of demonstrat-
ing the MOR potential at work), a leak rate of c ¼ 0:7, scalings for
both bias and input equal to 0:1, and spectral radius q ¼ 0:99. In
terms of R2 metric, the network had a test performance of
0:99881673;0:99900379ð Þ for each individual well bottom-hole
pressure.

Now, we run POD experiments with the previously trained net-
work to assess how MOR performs in terms of R2 compared to the
original 1;400 units network. Fig. 7 depicts an experiment where
MOR of different state sizes was tested in terms of R2 over the test
data. One can infer that, after a given number of states 150ð Þ, the
performance remains consistently close to the original network
in terms of R2, despite having only 10% of the original number of
states.

POD reduction that resulted in 92 states also showcased good
performance compared to the original network of 1;400 neurons.
However, with only POD, the computational problem of computing
TTf remains. We select the case where the reduced network has 92
states (representing an energy cutoff of 1%) and try performing
Fig. 7. POD-ESN for a system identification task. The full ESN network has 1;400
neurons and was trained to model the platform with two wells and one riser. The x
axis is the number of states of the reduced network, whereas the y axis is the
R2metric on the test set for each output variable (bottom-hole pressures). The
bottom-hole pressure of the first well is represented in blue, while the orange color
denotes the bottom-hole pressure of the second well. The R2 of the original network
corresponds to the horizontal lines of the respective colors for comparison.
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DEIM on it. Fig. 8 depicts a simulation for the ESN, POD-ESN, and
POD-DEIM ESN for the test data of the two-wells and one riser plat-
form. Even though there was a reduction from 1;400 to only 92
states, the behavior of the ESN and the POD-ESN managed to be
close in terms of dynamics. The application of DEIM reduced the
computation nodes from 1;400 to 1;073; however, some over-
shooting emerged, which was not present in the ESN and POD-
ESN. Concerning the simulation run in Fig. 8, the R2 for the normal-
ized bottom-hole pressure of each well was: 0:9988; 0:9990ð Þ for
the ESN, 0:9979;0:9981ð Þ for the POD-ESN, and 0:9873;0:9671ð Þ
for the DEIM-POD-ESN. There is little drop in response quality from
reducing the number of states from 1;400 to 92 through POD, but
performing interpolation from a standard POD to a POD-DEIM
framework seems to affect the response more significantly. The
small drop in response quality concerning the POD-ESN is expect-
ed, as the POD was performed requesting a 1% energy cutoff. In
other words, the reduced-order model is 99% close to the original
ESN regarding dynamic information.
6. Discussion

POD-reduced ESN achieved a response close to the original ESN
for the NARMA and the two-well one-riser case study, while it in-
curred a minor performance loss in the MC experiments. However,
DEIM did not reach the same performance as POD in those exper-
iments. These findings indicate that DEIM incurs more dynamic-
information loss than POD, as the latter retains the number of ac-
tivation functions in the reduced model even though it reduces the
number of states. Thus, we conjecture that the capacity of a reser-
voir to represent a nonlinear system accurately is more influenced
by the combination of the nonlinear functions in a high-
dimensional space than by maintaining a high-dimensionality of
the reservoir states themselves. In the context of MOR, this func-
tion combination is given by lifting the reduced states back to
the original space just before applying the tanh nonlinearity.

The application of POD leads to some reduction in the memory
required for storing and using the POD-reduced ESN. First, the
state-to-output linear combination matrix Wo

rT maps the reduced
space directly to the output, invariably reducing its size. Also, the
computation of the activation functions becomes slightly less ex-
pensive memory-wise because the resulting matrix Wr

rT, which is
a product computed offline, has fewer elements. Of course, the re-
Fig. 8. Single simulation run involving a POD with 92 states (0:01 energy cutoff)
and a DEIM interpolation withm ¼ 1;073, put side by side with the original data for
the bottom hole pressure pbh of both wells (normalized), and the original ESN.



Table 2
Mean execution time for the NARMA experiment composed of 5;000 time steps.

Mean Execution Time (ms) St. Dev. (ms)

ESN (size = 1400) 0.767 0.537
POD (size = 3) 0.072 0.0498
POD (size = 6) 0.078 0.0251
POD (size = 7) 0.141 0.391
POD (size = 8) 0.131 0.340
POD (size = 9) 0.160 0.543
POD (size = 10) 0.140 0.467
POD (size = 11) 0.233 0.955
POD (size = 13) 0.105 0.122
POD (size = 17) 0.106 0.0738
POD (size = 30) 0.135 0.0856
POD (size = 66) 0.147 0.254
POD (size = 73) 0.144 0.138
POD (size = 82) 0.141 0.140
POD (size = 92) 0.155 0.109
POD (size = 106) 0.151 0.0744
POD (size = 123) 0.149 0.0907
POD (size = 149) 0.183 0.407
POD (size = 186) 0.201 0.145
POD (size = 248) 0.230 0.134
POD (size = 375) 0.408 0.199
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sulting matrix is still large compared to an ESN with the same size
as the reduction, rendering the same-size ESN less complex than
the POD-reduced one.

Even though POD computes the same number of activation
functions as the original ESN, the computation time is significantly
reduced, as shown in Table 2. This table shows the mean time it
took to execute a step in the full ESN against the time it took to per-
form a POD-ESN computation step for the NARMA experiment. For
instance, when applying POD-ESN to reduce from 1400 states to 66
states, we get an 80% decrease in mean execution time (from
0.767 ms to 0.147 ms) while still maintaining excellent perfor-
mance, as this setup is near the horizontal line in Fig. 5. All exper-
iments were performed under similar conditions and with the
same computer.

As shown in Table 2, even though there is no computation re-
duction in the nonlinear nodes, the computational time for a
POD-ESN to compute a time step is reduced, even if by a small mar-
gin. This computation-speed gain happens precisely because the
reduced-order ESN has fewer states, despite the nonlinear node
computation remaining unchanged.

As previously discussed, the poor performance of DEIM in the
memory capacity experiments corroborates the loss of stability in-
curred in the DEIM-reduced ESNs. Besides, even when the DEIM-
reduced ESN dynamic system remained stable, as in the two-well
experiment illustrated in Fig. 8, the system experienced high over-
shoots translating into modeling errors. The independent work
[39] that also implements POD/DEIM on ESN, which appeared in
the literature during the writing of this research, proposes a
method to deal with the stability issue. However, the method is re-
stricted to the particular class of ESNs with dynamic equations
without the bias term. That method relies on expanding the non-
linear dynamics reduced by the DEIM so that the Jacobian contri-

bution of the terms affected by PTU
� �

becomes null concerning

u ¼ 0. In this context, generalized methods (which account for
the bias term as well) to guarantee stability retention of an ESN in-
terpolated by DEIM are an interesting topic for future works.
7. Conclusion

In this investigation, the POD achieved exceptional results in re-
ducing the number of states of an ESN and maintaining perfor-
mance. The reduced ESN performed nearly as well as the original
10
ESN, despite the drastic reduction of states in a typical system
identification task. This work also showcased how the nature of
the excitation signal changes the singular value profile of the
SVD, concluding that lower-frequency input signals can result in
more efficient reductions. Ideally, the excitation signal should be
as slow as necessary to identify a system.

However, despite performing MC tests considering signals that
carry information from all frequencies, the POD-reduced network
performed better than an ESN of the same size trained on the data.
Arguably, the superior performance of the POD-reduced ESN may
be attributed to its ability to emulate the behavior of the larger
original ESN. Additionally, the increased complexity of the reduced
network, compared to an ESN of the same size, could contribute to
its enhanced performance.

These findings imply that applying POD to reduce the number
of states (reservoir size) of an ESN is an excellent strategy to obtain
a smaller model that behaves almost equivalently to the original
one. However, some adaptation to the DEIM method may be nec-
essary before it can be applied to increase model efficiency further.
Also, reducing the reservoir size using POD has the advantage of in-
terpretability since the states are sorted and pruned according to
the energy contribution metric. Finally, applying POD to an ESN
can show which linear combination of states contributes more sig-
nificantly to the ESN dynamic behavior.

For possible future work, we will test the developed POD-ESN
model in predictive control applications, comparing the perfor-
mance of the reduced-order model to its full-order counterpart.
Further, there are applications in reservoir computing, such as time
series prediction problems, which could benefit from a reservoir
reduction using the POD-ESN. Another direction for future research
is the study of ways to adapt DEIM to perform model reductions
more consistently.
Data availability

Data will be made available on request.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work was funded in part by FAPESC (grant 2021TR2265),
CAPES (grant 88882.182533/2011-01), and CNPq (grant
308624/2021-1).

References

[1] O. Nelles, Nonlinear System Identification: From Classical Approaches to
Neural Networks and Fuzzy Models, 1 ed., Springer, Berlin, 2001.

[2] C.M. Bishop, Pattern Recognition and Machine Learning (Information Science
and Statistics), Springer-Verlag Inc., New York, 2006.

[3] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016, http://
www.deeplearningbook.org.

[4] M.C. Mozer, A focused backpropagation algorithm for temporal pattern
recognition, Complex Systems 3 (1989) 349–381.

[5] S. Hochreiter, J. Schmidhuber, Long short-termmemory, Neural Computation 9
(1997) 1735–1780, https://doi.org/10.1162/neco.1997.9.8.1735.

[6] H. Jaeger, M. Lukosevicius, D. Popovici, U. Siewert, Optimization and
applications of echo state networks with leaky-integrator neurons, Neural
Networks 20 (2007) 335–352, https://doi.org/10.1016/j.neunet.2007.04.016.

[7] W. Maass, Liquid state machines: Motivation, theory, and applications, in:
Computability in Context, Imperial College Presss, 2011, pp. 275–296, https://
doi.org/10.1142/9781848162778_0008.

[8] E.A. Antonelo, B. Schrauwen, On learning navigation behaviors for small mobile
robots with reservoir computing architectures, IEEE Transactions on Neural



J.P. Jordanou, E. Aislan Antonelo, E. Camponogara et al. Neurocomputing 548 (2023) 126395
Networks and Learning Systems 26 (2015) 763–780, https://doi.org/10.1109/
TNNLS.2014.2323247.

[9] R. Mezzi, N. Yousfi-Steiner, M.C. Péra, D. Hissel, L. Larger, An echo state
network for fuel cell lifetime prediction under a dynamic micro-cogeneration
load profile, Applied Energy 283 (2021), https://doi.org/10.1016/j.
apenergy.2020.116297.

[10] Y. Bai, M.-D. Liu, L. Ding, Y.-J. Ma, Double-layer staged training echo-state
networks for wind speed prediction using variational mode decomposition,
Applied Energy 301 (2021), https://doi.org/10.1016/j.apenergy.2021.117461.

[11] S.F. Stefenon, L.O. Seman, N.F. Sopelsa Neto, L.H. Meyer, A. Nied, K.-C. Yow,
Echo state network applied for classification of medium voltage insulators,
International Journal of Electrical Power & Energy Systems 134 (2022), https://
doi.org/10.1016/j.ijepes.2021.107336.

[12] R. Gao, P. Suganthan, Q. Zhou, K. Fai Yuen, M. Tanveer, Echo state neural
network based ensemble deep learning for short-term load forecasting, in:
IEEE Symposium Series on Computational Intelligence (SSCI), 2022, pp. 277–
284. DOI: 10.1109/SSCI51031.2022.10022067.

[13] H. Wang, Y. Liu, P. Lu, Y. Luo, D. Wang, X. Xu, Echo state network with logistic
mapping and bias dropout for time series prediction, Neurocomputing 489
(2022) 196–210, https://doi.org/10.1016/j.neucom.2022.03.018.

[14] Z. Li, G. Tanaka, Multi-reservoir echo state networks with sequence resampling
for nonlinear time-series prediction, Neurocomputing 467 (2022) 115–129,
https://doi.org/10.1016/j.neucom.2021.08.122.

[15] E. Camacho, C. Bordons, Model Predictive Control, Springer, 1999.
[16] S. Chaturantabut, D.C. Sorensen, Nonlinear model reduction via discrete

empirical interpolation, SIAM Journal on Scientific Computing 32 (2010)
2737–2764, https://doi.org/10.1137/090766498.

[17] Y. Wang, B. Yu, Y. Wang, Acceleration of gas reservoir simulation using proper
orthogonal decomposition, Geofluids 2018 (2018) 1–15, https://doi.org/
10.1155/2018/8482352.

[18] H. Jaeger, Short term memory in echo state networks, Technical Report GMD
Report 152, German National Research Center for Information Technology,
2002.

[19] Y. Sakemi, K. Morino, T. Leleu, K. Aihara, Model-size reduction for reservoir
computing by concatenating internal states through time, Scientific Reports 10
(2020), https://doi.org/10.1038/s41598-020-78725-0.

[20] J.P. Jordanou, E.A. Antonelo, E. Camponogara, Online learning control with echo
state networks of an oil production platform, Eng. Appl. Artif. Intell. 85 (2019)
214–228, https://doi.org/10.1016/j.engappai.2019.06.011.

[21] B. Whiteaker, P. Gerstoft, Reducing echo state network size with controllability
matrices, Chaos: An Interdisciplinary, Journal of Nonlinear Science 32 (2022),
https://doi.org/10.1063/5.0071926.

[22] W. Liu, Y. Bai, X. Jin, X. Wang, T. Su, J. Kong, Broad echo state network with
reservoir pruning for nonstationary time series prediction, Computational
Intelligence and Neuroscience 2022 (2022) 1–15, https://doi.org/10.1155/
2022/3672905.

[23] C. Yang, Z. Wu, Multi-objective sparse echo state network, Neural Computing
and Applications (2022), https://doi.org/10.1007/s00521-022-07711-6.

[24] A. Rodan, P. Tino, Minimum complexity echo state network, IEEE Transactions
on Neural Networks 22 (2011) 131–144, https://doi.org/10.1109/
TNN.2010.2089641.

[25] S. Løkse, F.M. Bianchi, R. Jenssen, Training echo state networks with
regularization through dimensionality reduction, Cognitive Computation 9
(2017) 364–378, https://doi.org/10.1007/s12559-017-9450-z.

[26] A. Haluszczynski, J. Aumeier, J. Herteux, C. Räth, Reducing network size and
improving prediction stability of reservoir computing, Chaos: An
Interdisciplinary, Journal of Nonlinear Science 30 (2020), https://doi.org/
10.1063/5.0006869.

[27] H. Jaeger, H. Haas, Harnessing nonlinearity: predicting chaotic systems and
saving energy in wireless telecommunication, Science 304 (2004) 78–80,
https://doi.org/10.1126/science.1091277.

[28] H. Jaeger, The ‘‘echo state” approach to analysing and training recurrent neural
networks – with an Erratum note, Fraunhofer Institute for Autonomous
Intelligent Systems, 2001, Technical Report GMD 148,.

[29] E.A. Antonelo, E. Camponogara, B. Foss, Echo state networks for data-driven
downhole pressure estimation in gas-lift oil wells, Neural Networks 85 (2017)
106–117.

[30] M.C. Ozturk, D. Xu, J.C. Príncipe, Analysis and design of echo state networks,
Neural Computation 19 (2007) 111–138, https://doi.org/10.1162/
neco.2007.19.1.111.

[31] D. Verstraeten, B. Schrauwen, On the quantification of dynamics in reservoir
computing, in: C. Alippi, M. Polycarpou, C. Panayiotou, G. Ellinas (Eds.),
Artificial Neural Networks, 2009, pp. 985–994.

[32] D. Verstraeten, J. Dambre, X. Dutoit, B. Schrauwen, Memory versus non-
linearity in reservoirs, in: Int. Joint Conference on Neural Networks, IEEE,
Barcelona, Spain, 2010, pp. 18–23, https://doi.org/10.1109/
IJCNN.2010.5596492.

[33] C.-T. Chen, Linear System Theory and Design, 3rd ed., Oxford University Press
Inc, New York, NY, USA, 1998.

[34] X. Sun, M. Xu, Optimal control of water flooding reservoir using proper
orthogonal decomposition, Journal of Computational and Applied
Mathematics 320 (2017) 120–137, https://doi.org/10.1016/j.cam.2017.01.020.
11
[35] R.C. Selga, B. Lohmann, R. Eid, Stability preservation in projection-based model
order reduction of large scale systems, European Journal of Control 18 (2012)
122–132, https://doi.org/10.3166/ejc.18.122-132.

[36] E. Jahanshahi, S. Skogestad, H. Hansen, Control structure design for stabilizing
unstable gas-lift oil wells, IFAC Proceedings Volumes 45 (2012) 93–100,
https://doi.org/10.3182/20120710-4-SG-2026.00110.

[37] E. Jahanshahi, S. Skogestad, Simplified dynamical models for control of severe
slugging in multiphase risers, IFAC Proceedings Volumes 44 (2011) 1634–
1639, https://doi.org/10.3182/20110828-6-IT-1002.00981.

[38] J.P. Jordanou, E.A. Antonelo, E. Camponogara, Echo state networks for practical
nonlinear model predictive control of unknown dynamic systems, IEEE
Transactions on Neural Networks and Learning Systems 33 (2022) 2615–
2629, https://doi.org/10.1109/TNNLS.2021.3136357.

[39] H. Wang, X. Long, X.-X. Liu, fastESN: Fast echo state network, IEEE Transactions
on Neural Networks and Learning Systems (2022), https://doi.org/10.1109/
TNNLS.2022.3167466.

Jean P. Jordanou received the M.Sc. degree in au-
tomation and systems engineering from the Federal
University of Santa Catarina, Brazil, in 2019. He joined
as a Ph.D. student at the same institution rightly after-
wards. His research interests include data-driven algo-
rithms for optimization and control, reservoir
computing, model order reduction and model predictive
control.
Eric Aislan Antonelo received the Ph.D. and M.Sc. de-
grees in Computer Engineering respectively from Ghent
University, Belgium, in 2011 and Halmstad University,
Sweden, in 2006. He is currently a faculty member of
the Department of Automation and Systems Engineer-
ing at the Federal University of Santa Catarina, Brazil.
His research is mainly focused on reservoir computing
and machine learning for industrial applications (mod-
eling, detection, and control tasks), as well as imitation
learning approaches for autonomous vehicles.
Eduardo Camponogara received the Ph.D. degree in
electrical and computer engineering from Carnegie
Mellon University, Pittsburgh, USA, in 2000. He is a
professor in the Department of Automation and Systems
Engineering, Federal University of Santa Catarina, Flo-
rian?polis, Brazil, since 2002. His research interests in-
clude systems optimization, distributed optimization
algorithms, and data-driven algorithms for optimization
and control.
Dr. Eduardo Gildin is a Professor of Petroleum Engi-
neering at Texas A&M University and is the holder of the
L.F. Peterson ’36 Professorship in Petroleum Engineer-
ing. Dr. Gildin received his PhD from The University of
Texas at Austin in Aerospace Engineering and has held
post-doctoral positions with Rice University and UT
Austin. His research has been supported by grants from
NSF, DOE, DOD, NASA and Industry, with main topics in
(1) physics-based and data-driven reduced-order mod-
eling for reservoir simulation and optimization; and (2)
drilling modeling, control and automation. Dr. Gildin
was inducted into the SPE Distinguish Membership in
2021.


