import torch import numpy as np import matplotlib.pyplot as plt DeepKoopmanModel = torch.load('./ModelLib/DeepKoopmanModel.pt', map_location="cpu") DataNor = np.loadtxt('./DataLib/DataNor.csv', delimiter=',') DataNor = torch.from_numpy(DataNor).float() Latent = DeepKoopmanModel.encoder(DataNor) Latent = Latent.detach().numpy() Max = np.max(Latent, axis=0) Min = np.min(Latent, axis=0) LatentMaxMin = np.vstack([Max, Min]) LatentNor = 2*(Latent-Min)/(Max-Min)-1 np.savetxt('./DataLib/Latent.csv', Latent, delimiter=',') np.savetxt('./DataLib/LatentNor.csv', LatentNor, delimiter=',') np.savetxt('./DataLib/LatentMaxMin', LatentMaxMin, delimiter=',') plt.figure() plt.plot(LatentNor[:, 30]) plt.show()