AutoEncoderProcess.py 708 B

123456789101112131415161718192021222324
  1. import torch
  2. import numpy as np
  3. import matplotlib.pyplot as plt
  4. DeepKoopmanModel = torch.load('./ModelLib/DeepKoopmanModel.pt', map_location="cpu")
  5. DataNor = np.loadtxt('./DataLib/DataNor.csv', delimiter=',')
  6. DataNor = torch.from_numpy(DataNor).float()
  7. Latent = DeepKoopmanModel.encoder(DataNor)
  8. Latent = Latent.detach().numpy()
  9. Max = np.max(Latent, axis=0)
  10. Min = np.min(Latent, axis=0)
  11. LatentMaxMin = np.vstack([Max, Min])
  12. LatentNor = 2*(Latent-Min)/(Max-Min)-1
  13. np.savetxt('./DataLib/Latent.csv', Latent, delimiter=',')
  14. np.savetxt('./DataLib/LatentNor.csv', LatentNor, delimiter=',')
  15. np.savetxt('./DataLib/LatentMaxMin', LatentMaxMin, delimiter=',')
  16. plt.figure()
  17. plt.plot(LatentNor[:, 30])
  18. plt.show()