ESNModel.py 1.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445
  1. import reservoirpy as rpy
  2. from KoopmanESNModel import KoopmanESNConfig
  3. from reservoirpy.nodes import Reservoir, Ridge
  4. import numpy as np
  5. class ESN:
  6. def __init__(self, config: KoopmanESNConfig):
  7. super().__init__()
  8. self.esn_model = None
  9. self.config = config
  10. def esn_train(self, data_train):
  11. rpy.verbosity(0)
  12. rpy.set_seed(42)
  13. reservoir = Reservoir(
  14. units=self.config.units,
  15. lr=self.config.lr,
  16. sr=self.config.sr,
  17. rc_connectivity=self.config.sp
  18. )
  19. readout = Ridge(ridge=self.config.ridge)
  20. esn_model = reservoir >> readout
  21. data_train_in = data_train[:-1, :]
  22. data_train_out = data_train[1:, :]
  23. self.esn_model = esn_model.fit(
  24. data_train_in,
  25. data_train_out,
  26. warmup=self.config.train_warmup
  27. )
  28. def predict(self, data_warm):
  29. warmup_data = self.esn_model.run(data_warm, reset=True)
  30. x = warmup_data[-1, :].reshape(1, -1)
  31. data_pre = np.empty((self.config.predict_len, self.config.state_dim))
  32. for i in range(self.config.predict_len):
  33. data_pre[i, :] = x
  34. x = self.esn_model(x)
  35. return data_pre