AutoEncoderTest.py 601 B

1234567891011121314151617181920
  1. from DeepKoopmanModel import DeepKoopMan, DeepKoopManConfig
  2. import torch
  3. import numpy as np
  4. import matplotlib.pyplot as plt
  5. Model = torch.load('./ModelLib/DeepKoopmanModel.pt', map_location="cpu")
  6. encoder = Model.encoder
  7. decoder = Model.decoder
  8. Data = np.loadtxt('./DataLib/DataNor.csv', delimiter=',')
  9. Latent = encoder(torch.from_numpy(Data).float())
  10. DataPre = decoder(Latent).detach().numpy()
  11. MSE = np.linalg.norm(Data - DataPre, ord='fro') ** 2 / np.prod(Data.shape)
  12. print(MSE)
  13. for fea in np.arange(13):
  14. plt.figure(fea)
  15. plt.plot(Data[:, fea])
  16. plt.plot(DataPre[:, fea])
  17. plt.show()