123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475 |
- import torch
- from KoopmanESNModel import KoopmanESNConfig, KoopmanESN
- from BaseModel.ESNModel import ESN
- from DataProcess import DataLoad
- import numpy as np
- import matplotlib.pyplot as plt
- KoopmanModel = torch.load('./ModelLib/DeepKoopmanModel.pt', map_location="cpu")
- encoder = KoopmanModel.encoder
- decoder = KoopmanModel.decoder
- A = KoopmanModel.A.detach().numpy()
- state_dim = KoopmanModel.state_dim
- latent_dim = KoopmanModel.latent_dim
- lr = 0.5
- sr = 0.9
- sp = 0.1
- ridge = 1e-7
- train_start = 15000
- train_len = 5000
- train_warmup = 100
- predict_warmup = 100
- predict_len = 1000
- ESNconfig = KoopmanESNConfig(
- units=100,
- lr=lr,
- sr=sr,
- sp=sp,
- ridge=ridge,
- train_start=train_start,
- train_len=train_len,
- train_warmup=train_warmup,
- predict_warmup=predict_warmup,
- predict_len=predict_len,
- state_dim=state_dim
- )
- ESNModel = ESN(
- config=ESNconfig
- )
- _, DataTrain, DataWarm, DataVal = DataLoad('./DataLib/DataNor.csv', ESNconfig)
- # _, DataTrain, DataWarm = DataLoad('./DataLib/DataNor.csv', config)
- # ESN
- ESNModel.esn_train(DataTrain)
- DataPreESN = ESNModel.predict(DataWarm)
- DataPreESN_Ten = torch.from_numpy(DataPreESN).float()
- DataVal_Ten = torch.from_numpy(DataVal).float()
- DataWarm_Ten = torch.from_numpy(DataWarm).float()
- StatePreESN_Ten = DataPreESN_Ten
- StateVal_Ten = DataVal_Ten
- StateWarm_Ten = DataWarm_Ten
- StatePreESN = StatePreESN_Ten.detach().numpy()
- StateVal = StateVal_Ten.detach().numpy()
- StateWarm = StateWarm_Ten.detach().numpy()
- ESNMSE = np.linalg.norm(StatePreESN - StateVal, ord='fro') ** 2 / np.prod(StateVal.shape)
- print(ESNMSE)
- t = np.arange(ESNconfig.predict_warmup + ESNconfig.predict_len)
- for fea in np.arange(state_dim):
- plt.figure(fea)
- plt.plot(t[:ESNconfig.predict_warmup], StateWarm[:, fea],
- linestyle="-", color='black', label='StateWarm')
- plt.plot(t[-ESNconfig.predict_len:], StatePreESN[:, fea],
- linestyle="--", color='green', label='ESNPre')
- plt.plot(t[-ESNconfig.predict_len:], StateVal[:, fea],
- linestyle="-", color='blue', label='StateReal')
- plt.legend()
- plt.show()
|