ESNModel.py 1.3 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546
  1. import reservoirpy as rpy
  2. from KoopmanESNModel import KoopmanESNConfig
  3. from reservoirpy.nodes import Reservoir, Ridge
  4. import numpy as np
  5. class ESN:
  6. def __init__(self, config: KoopmanESNConfig):
  7. super().__init__()
  8. self.esn_model = None
  9. self.config = config
  10. def esn_train(self, data_train):
  11. rpy.verbosity(0)
  12. rpy.set_seed(42)
  13. reservoir = Reservoir(
  14. units=self.config.units,
  15. lr=self.config.lr,
  16. sr=self.config.sr,
  17. rc_connectivity=self.config.sp,
  18. activation='identity'
  19. )
  20. readout = Ridge(ridge=self.config.ridge)
  21. esn_model = reservoir >> readout
  22. data_train_in = data_train[:-1, :]
  23. data_train_out = data_train[1:, :]
  24. self.esn_model = esn_model.fit(
  25. data_train_in,
  26. data_train_out,
  27. warmup=self.config.train_warmup
  28. )
  29. def predict(self, data_warm):
  30. warmup_data = self.esn_model.run(data_warm, reset=True)
  31. x = warmup_data[-1, :].reshape(1, -1)
  32. data_pre = np.empty((self.config.predict_len, self.config.state_dim))
  33. for i in range(self.config.predict_len):
  34. data_pre[i, :] = x
  35. x = self.esn_model(x)
  36. return data_pre